亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Copolymer Property Prediction through the Weighted-Chained-SMILES Machine Learning Framework

共聚物 财产(哲学) 计算机科学 人工智能 材料科学 机器学习 复合材料 聚合物 哲学 认识论
作者
Qi Huang,Zuowei Chen,Zhongtao Lin,Weimin Li,Yu Wang,Lei Zhu
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (7): 3666-3675
标识
DOI:10.1021/acsapm.3c02715
摘要

Accurately predicting copolymer properties plays a pivotal role in the field of polymer informatics. This endeavor necessitates a comprehensive understanding of polymer structures, adept feature engineering, and proficient application of machine learning algorithms. In traditional methodologies, features for each monomer structure were generated independently, thus, segregating features from individual monomers. This approach results in a less informative representation, with limited applicability. To address these challenges, we introduce an innovative machine learning framework, named weighted-chained-SMILES. By constructing a representative SMILES notation, more intricate information can be encapsulated within the generated features. Our experimental results to predict the thermal properties demonstrate that our approach not only delivers competitive predictive performance but also exhibits enhanced adaptability across a diverse range of molecular representations. The versatility showcased by our model suggests promising potential for tackling more complex copolymer systems and extending its predictive capabilities to various other polymer properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助duobao鱼采纳,获得10
4秒前
duobao鱼完成签到,获得积分10
13秒前
GIA完成签到,获得积分10
25秒前
巨星不吃辣完成签到,获得积分10
31秒前
swimming完成签到 ,获得积分10
53秒前
LPPQBB应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
ccc完成签到 ,获得积分10
1分钟前
英姑应助Zidawhy采纳,获得10
1分钟前
2分钟前
科研通AI2S应助敏er好学采纳,获得10
2分钟前
2分钟前
Percy完成签到 ,获得积分10
2分钟前
2分钟前
luster发布了新的文献求助10
2分钟前
Zidawhy发布了新的文献求助10
2分钟前
一休完成签到,获得积分10
2分钟前
3分钟前
科目三应助叶逐风采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分10
3分钟前
敏er好学发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
LPPQBB应助科研通管家采纳,获得30
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
叶逐风发布了新的文献求助10
3分钟前
3分钟前
wyx发布了新的文献求助10
3分钟前
超级的路人完成签到,获得积分20
3分钟前
cassie发布了新的文献求助10
3分钟前
Marciu33发布了新的文献求助10
3分钟前
嘻嘻完成签到 ,获得积分10
3分钟前
Hello应助叶逐风采纳,获得10
3分钟前
小蘑菇应助cassie采纳,获得10
3分钟前
4分钟前
施芳铭发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356840
求助须知:如何正确求助?哪些是违规求助? 4488537
关于积分的说明 13972306
捐赠科研通 4389526
什么是DOI,文献DOI怎么找? 2411633
邀请新用户注册赠送积分活动 1404132
关于科研通互助平台的介绍 1378213