已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaabc完成签到 ,获得积分10
刚刚
jf完成签到 ,获得积分10
1秒前
好哇发布了新的文献求助10
1秒前
charles完成签到,获得积分20
2秒前
QQQQQQQQQ完成签到 ,获得积分10
3秒前
3秒前
张三关注了科研通微信公众号
4秒前
lmy发布了新的文献求助10
4秒前
4秒前
田様应助小咩采纳,获得10
4秒前
舒适的金针菇应助清风采纳,获得10
5秒前
SciGPT应助超人强采纳,获得10
5秒前
令狐冲发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
8秒前
9秒前
11秒前
QQQQQQQQQ关注了科研通微信公众号
11秒前
12秒前
张三发布了新的文献求助10
14秒前
15秒前
15秒前
zhangHR完成签到 ,获得积分20
16秒前
16秒前
Ico发布了新的文献求助10
16秒前
cyw关注了科研通微信公众号
17秒前
17秒前
19秒前
糊涂完成签到 ,获得积分10
20秒前
21秒前
IV完成签到,获得积分10
21秒前
duang发布了新的文献求助10
22秒前
22秒前
受伤白猫发布了新的文献求助10
22秒前
隐形曼青应助清风采纳,获得10
23秒前
浮游应助AIR采纳,获得10
23秒前
23秒前
超人强发布了新的文献求助10
23秒前
糊涂关注了科研通微信公众号
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919