亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqq完成签到,获得积分0
6秒前
QQ完成签到,获得积分20
9秒前
27秒前
团子发布了新的文献求助10
31秒前
CodeCraft应助可爱丹彤采纳,获得10
32秒前
38秒前
42秒前
熊建发布了新的文献求助10
44秒前
飘逸的山柏完成签到 ,获得积分10
47秒前
沐沐发布了新的文献求助10
50秒前
HaCat应助科研通管家采纳,获得10
59秒前
怕黑半仙应助科研通管家采纳,获得10
59秒前
Criminology34应助科研通管家采纳,获得30
1分钟前
团子完成签到,获得积分10
1分钟前
Brain完成签到 ,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
简让完成签到 ,获得积分10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
1分钟前
现代无敌发布了新的文献求助10
1分钟前
小小心愿发布了新的文献求助10
1分钟前
天天天晴完成签到 ,获得积分10
1分钟前
FashionBoy应助可爱丹彤采纳,获得10
1分钟前
zybbb完成签到 ,获得积分10
2分钟前
顾矜应助可爱丹彤采纳,获得10
2分钟前
刘萌发布了新的文献求助10
2分钟前
2分钟前
Gabriel发布了新的文献求助10
2分钟前
浮游应助bxy采纳,获得10
2分钟前
挖掘机完成签到,获得积分10
2分钟前
浮游应助Gabriel采纳,获得10
2分钟前
Jasper应助雨之夏日采纳,获得10
2分钟前
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
云蓝完成签到 ,获得积分10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
浮游应助默默善愁采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302244
求助须知:如何正确求助?哪些是违规求助? 4449478
关于积分的说明 13848401
捐赠科研通 4335641
什么是DOI,文献DOI怎么找? 2380481
邀请新用户注册赠送积分活动 1375461
关于科研通互助平台的介绍 1341639