Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
章鱼发布了新的文献求助10
刚刚
chenhouhan发布了新的文献求助10
刚刚
牛曙东完成签到,获得积分10
1秒前
里里应助刘研采纳,获得10
1秒前
1秒前
所所应助付艳采纳,获得10
2秒前
2秒前
Lucas应助第七个星球采纳,获得10
2秒前
mooncake发布了新的文献求助10
2秒前
zx发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
Ludi完成签到,获得积分10
3秒前
伏波完成签到,获得积分0
3秒前
Hello应助KeYang采纳,获得10
4秒前
小马发布了新的文献求助30
4秒前
西出阳关完成签到,获得积分10
4秒前
jinlin完成签到,获得积分10
4秒前
5秒前
丘比特应助爱听歌采纳,获得10
5秒前
6秒前
horizon完成签到,获得积分20
6秒前
7秒前
7秒前
诚心冬亦完成签到,获得积分10
7秒前
天明完成签到,获得积分10
7秒前
稳重的太兰完成签到 ,获得积分10
7秒前
8秒前
8秒前
griffon完成签到,获得积分10
8秒前
木木完成签到,获得积分10
9秒前
cyndi发布了新的文献求助10
9秒前
9秒前
zx完成签到,获得积分10
10秒前
第七个星球完成签到,获得积分10
10秒前
搜集达人应助xh采纳,获得10
10秒前
11秒前
求助人员应助pax采纳,获得10
11秒前
青菜发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271