Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞翔的霸天哥应助未知采纳,获得30
刚刚
在水一方应助默默听双采纳,获得10
1秒前
s1mple完成签到,获得积分10
1秒前
1秒前
1秒前
共享精神应助Yoyo采纳,获得10
2秒前
情怀应助指北针采纳,获得10
3秒前
3秒前
失眠鸭完成签到,获得积分10
3秒前
yznfly应助zyx采纳,获得20
3秒前
4秒前
4秒前
贪玩心情发布了新的文献求助10
4秒前
5秒前
坚强的曼雁完成签到,获得积分10
5秒前
jiu完成签到,获得积分10
5秒前
5秒前
大鸣王潮发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
chenjie发布了新的文献求助10
7秒前
等待雅寒完成签到,获得积分10
7秒前
香蕉觅云应助daydreamammaking采纳,获得10
7秒前
科研通AI6应助欢呼的小玉采纳,获得30
7秒前
8秒前
cxyyy完成签到,获得积分10
8秒前
8秒前
结实的元灵完成签到,获得积分10
8秒前
9秒前
哆啦A梦发布了新的文献求助10
9秒前
9秒前
彳亍1117应助gao采纳,获得10
9秒前
文静的柚子完成签到,获得积分10
9秒前
min完成签到,获得积分20
10秒前
10秒前
伶俐骁发布了新的文献求助10
10秒前
11秒前
Akim应助sunny采纳,获得10
11秒前
完美世界应助飞鸟采纳,获得10
11秒前
baiyang99完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207