Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚薇发布了新的文献求助10
1秒前
鱿鱼完成签到,获得积分10
1秒前
ww完成签到 ,获得积分10
1秒前
Unshouable完成签到,获得积分10
1秒前
搜集达人应助哈哈哈采纳,获得10
2秒前
不安青牛发布了新的文献求助10
2秒前
蔡媛嫄发布了新的文献求助10
2秒前
淡淡的南风应助素雅采纳,获得200
2秒前
2秒前
3秒前
3秒前
3秒前
浮游应助略略略采纳,获得10
4秒前
生生发布了新的文献求助10
4秒前
4秒前
所所应助zoey采纳,获得10
5秒前
王速临发布了新的文献求助10
5秒前
5秒前
我是弱智先帮我完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
核桃应助kangkang采纳,获得10
8秒前
圆子完成签到,获得积分10
8秒前
8秒前
cherry323发布了新的文献求助10
8秒前
SciGPT应助11采纳,获得10
9秒前
9秒前
9秒前
刘小蕊发布了新的文献求助10
9秒前
杜杜完成签到 ,获得积分10
9秒前
9秒前
9秒前
诺奖就在前方完成签到,获得积分20
10秒前
阿修罗完成签到,获得积分10
10秒前
10秒前
jacob258发布了新的文献求助10
10秒前
浮游应助xxx采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472693
求助须知:如何正确求助?哪些是违规求助? 4574967
关于积分的说明 14349488
捐赠科研通 4502296
什么是DOI,文献DOI怎么找? 2467064
邀请新用户注册赠送积分活动 1455042
关于科研通互助平台的介绍 1429246