Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助超级的路人采纳,获得10
刚刚
kk完成签到,获得积分10
刚刚
泥花发布了新的文献求助10
刚刚
刚刚
zer0发布了新的文献求助10
刚刚
李爱国应助王王的苏采纳,获得10
刚刚
cy发布了新的文献求助30
1秒前
的速度发布了新的文献求助10
1秒前
tesla发布了新的文献求助10
1秒前
打打应助huahua诀绝子采纳,获得10
1秒前
2秒前
wall发布了新的文献求助10
2秒前
娜娜发布了新的文献求助10
2秒前
tzhzh8完成签到,获得积分20
2秒前
积极枕头完成签到,获得积分10
3秒前
3秒前
今后应助dsd采纳,获得10
3秒前
淡然语芙完成签到 ,获得积分10
4秒前
4秒前
tzhzh8发布了新的文献求助10
4秒前
语安发布了新的文献求助30
5秒前
常大美女发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI5应助huanhuan采纳,获得10
6秒前
小贺完成签到 ,获得积分10
6秒前
NexusExplorer应助momo采纳,获得10
6秒前
桐桐应助萝卜采纳,获得10
6秒前
cloud完成签到,获得积分10
7秒前
紫吟发布了新的文献求助10
7秒前
科研通AI5应助娜娜采纳,获得10
8秒前
sc发布了新的文献求助10
8秒前
丘比特应助壮观的衫采纳,获得10
9秒前
完美世界应助ZZZZK采纳,获得10
9秒前
9秒前
孤独依波完成签到,获得积分10
10秒前
与落发布了新的文献求助10
10秒前
lzl007完成签到 ,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267