Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呆萌斯完成签到,获得积分10
刚刚
1秒前
事上炼应助Michelle采纳,获得10
1秒前
核桃发布了新的文献求助20
1秒前
黑沧浪亭完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
老孟完成签到,获得积分10
3秒前
西瓜完成签到,获得积分10
3秒前
3秒前
卡卡罗特发布了新的文献求助10
3秒前
4秒前
wangwang完成签到,获得积分10
4秒前
5秒前
渊_发布了新的文献求助10
6秒前
慕青应助阳光大山采纳,获得10
6秒前
酷酷念波发布了新的文献求助10
6秒前
21发布了新的文献求助10
7秒前
SSYAN发布了新的文献求助10
7秒前
8秒前
8秒前
Yami发布了新的文献求助10
8秒前
guugen发布了新的文献求助10
9秒前
11秒前
风中冰香应助秀儿采纳,获得10
11秒前
斯文尔芙完成签到,获得积分10
11秒前
07发布了新的文献求助10
11秒前
晓生完成签到,获得积分10
11秒前
hh发布了新的文献求助10
11秒前
渊_完成签到,获得积分10
12秒前
某博完成签到 ,获得积分10
12秒前
Orange应助酷酷念波采纳,获得10
13秒前
川农辅导员完成签到,获得积分10
14秒前
zzw发布了新的文献求助10
14秒前
SSYAN完成签到,获得积分10
14秒前
烟花应助斯文尔芙采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838