Super-resolution reconstruction of 3D digital rocks by deep neural networks

地质学 人工神经网络 深层神经网络 人工智能 计算机科学 古生物学
作者
Shu-Hung You,Qinzhuo Liao,Zhengting Yan,Gensheng Li,Shouceng Tian,Xianzhi Song,Haizhu Wang,Liang Xue,Gang Lei,Xu Liu,Shirish Patil
标识
DOI:10.1016/j.geoen.2024.212781
摘要

Digital rock technology provides valuable insights into the pore structure and fluid flow properties of geoenergy resources. Artificial intelligence technology in vision and image processing, especially the image super-resolution, has great potential for digital rock reconstruction and resolution enhancement. However, the analyzed core samples are typically sandstones/carbonates in micro-scale resolutions and in two-dimensional (2D) space, whereas the shale rocks in nano-scale resolutions for unconventional resources or three-dimensional (3D) digital cores are rarely investigated. Additionally, previous studies primarily emphasized image quality from a computer vision perspective, with little consideration given to estimating physical properties of digital rocks using super-resolution techniques. This study presents a very deep super-resolution (VDSR) algorithm, specifically designed to generate high-resolution 3D digital rock images, for nano-scale shale matrix and micro-scale hydraulic fractures. We compare both image quality and permeability accuracy between the original high-resolution images and the super-resolution images reconstructed by the proposed method. The results reveal that the reconstructed images using the proposed method closely resemble the actual images, and effectively reduce errors in permeability computations. This study highlights the applicability of the proposed VDSR algorithm in establishing the detailed structures of 3D nano-scale shale matrix and hydraulic fractured rocks, thus advancing super-resolution techniques in digital core analysis for geoenergy resources development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renmeitao66_3发布了新的文献求助30
刚刚
1秒前
songsong完成签到,获得积分10
1秒前
坐山客发布了新的文献求助10
1秒前
hhh发布了新的文献求助10
2秒前
2秒前
FashionBoy应助熊熊采纳,获得10
2秒前
Abracadabra发布了新的文献求助10
3秒前
surain发布了新的文献求助10
4秒前
小七发布了新的文献求助10
5秒前
6秒前
林妹妹发布了新的文献求助10
6秒前
科研通AI6应助儒雅的若剑采纳,获得10
6秒前
可爱的微笑应助meng采纳,获得10
7秒前
mhuim发布了新的文献求助10
7秒前
隐形曼青应助路不迷采纳,获得10
8秒前
8秒前
8秒前
璐璐完成签到,获得积分20
9秒前
领导范儿应助夜雨采纳,获得10
10秒前
surain完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
wenhuanwenxian完成签到 ,获得积分10
11秒前
爆米花应助Tperm采纳,获得20
12秒前
啦啦啦啦完成签到,获得积分10
12秒前
bitter完成签到,获得积分20
13秒前
13秒前
orixero应助一岁一礼采纳,获得10
13秒前
15秒前
Yang2完成签到,获得积分10
16秒前
16秒前
17秒前
整齐的忆彤完成签到,获得积分10
17秒前
18秒前
儒雅的若剑完成签到,获得积分10
18秒前
18秒前
小马甲应助howard采纳,获得10
19秒前
Sakura发布了新的文献求助10
20秒前
20秒前
wanci应助hhh采纳,获得10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655