Light-weight residual convolution-based capsule network for EEG emotion recognition

残余物 卷积(计算机科学) 卷积神经网络 分类器(UML) 特征提取 情绪识别 脑电图 人工智能 计算机科学 语音识别 特征(语言学) 模式识别(心理学) 心理学 算法 人工神经网络 语言学 哲学 精神科
作者
Cunhang Fan,Jinqin Wang,Huang Wei,Xiaoke Yang,Guangxiong Pei,Taihao Li,Zhao Lv
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102522-102522 被引量:35
标识
DOI:10.1016/j.aei.2024.102522
摘要

In recent years, electroencephalography (EEG) emotion recognition has achieved excellent progress. However, the applied shallow convolutional neural networks (CNNs) cannot characterize the spatial relations between different features well, which affects the performance of these models. In addition, because the amount of EEG sample data is small, it is challenging to collect and annotate enough EEG signals for emotion recognition. Extracting more distinguishing features from small sample data is one of the problems faced by EEG emotion recognition. To solve these problems, this paper proposes a light-weight residual convolution-based capsule network (LResCapsule) for EEG emotion recognition. The LResCapsule consists of a Light-ResNet based feature extractor and a capsule-based classifier. Because of the low EEG training data, we propose a low-parameter Light-ResNet to automatically extract deep emotion features from the raw EEG signal. Then the Capsule-based classifier is applied to identify the positional relations between local features and global features in the spatial domain, which can further improve the performance of EEG emotion recognition. Compared with ResNet18, the number of parameters of our proposed Light-ResNet is reduced by 84.5%. The experimental results on the DEAP and DREAMER datasets show that the proposed LResCapsule can outperform state-of-the-art methods in both subject-dependent and subject-independent experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云山完成签到,获得积分10
刚刚
务实晓蓝发布了新的文献求助10
刚刚
FashionBoy应助LLLLXR采纳,获得10
1秒前
tututu驳回了ding应助
1秒前
2秒前
落晖完成签到 ,获得积分10
2秒前
2秒前
3秒前
WYT发布了新的文献求助10
4秒前
哈密瓜发布了新的文献求助10
5秒前
5秒前
5秒前
特牛啊啊完成签到,获得积分10
6秒前
丘比特应助guoliyang采纳,获得10
7秒前
7秒前
junru发布了新的文献求助10
7秒前
在水一方应助sxq采纳,获得10
7秒前
8秒前
浮游应助hi_traffic采纳,获得10
8秒前
SZY0329完成签到,获得积分20
8秒前
默默善愁发布了新的文献求助10
8秒前
哈哈完成签到 ,获得积分10
8秒前
Zhang_Jt107完成签到,获得积分10
8秒前
9秒前
9秒前
Joker完成签到,获得积分10
9秒前
勤劳寡妇发布了新的文献求助10
10秒前
充电宝应助机灵水卉采纳,获得10
10秒前
11秒前
浮游应助7890733采纳,获得10
11秒前
田様应助7890733采纳,获得10
11秒前
12秒前
12秒前
杰文完成签到,获得积分10
12秒前
13秒前
所所应助裴雅柔采纳,获得10
13秒前
张宁波发布了新的文献求助10
15秒前
Sakura发布了新的文献求助10
15秒前
yunikn发布了新的文献求助10
15秒前
win发布了新的文献求助10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205985
求助须知:如何正确求助?哪些是违规求助? 4384621
关于积分的说明 13653797
捐赠科研通 4242847
什么是DOI,文献DOI怎么找? 2327751
邀请新用户注册赠送积分活动 1325466
关于科研通互助平台的介绍 1277574