Light-weight residual convolution-based capsule network for EEG emotion recognition

残余物 卷积(计算机科学) 卷积神经网络 分类器(UML) 特征提取 情绪识别 脑电图 人工智能 计算机科学 语音识别 特征(语言学) 模式识别(心理学) 心理学 算法 人工神经网络 语言学 精神科 哲学
作者
Cunhang Fan,Jinqin Wang,Huang Wei,Xiaoke Yang,Guangxiong Pei,Taihao Li,Zhao Lv
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102522-102522 被引量:26
标识
DOI:10.1016/j.aei.2024.102522
摘要

In recent years, electroencephalography (EEG) emotion recognition has achieved excellent progress. However, the applied shallow convolutional neural networks (CNNs) cannot characterize the spatial relations between different features well, which affects the performance of these models. In addition, because the amount of EEG sample data is small, it is challenging to collect and annotate enough EEG signals for emotion recognition. Extracting more distinguishing features from small sample data is one of the problems faced by EEG emotion recognition. To solve these problems, this paper proposes a light-weight residual convolution-based capsule network (LResCapsule) for EEG emotion recognition. The LResCapsule consists of a Light-ResNet based feature extractor and a capsule-based classifier. Because of the low EEG training data, we propose a low-parameter Light-ResNet to automatically extract deep emotion features from the raw EEG signal. Then the Capsule-based classifier is applied to identify the positional relations between local features and global features in the spatial domain, which can further improve the performance of EEG emotion recognition. Compared with ResNet18, the number of parameters of our proposed Light-ResNet is reduced by 84.5%. The experimental results on the DEAP and DREAMER datasets show that the proposed LResCapsule can outperform state-of-the-art methods in both subject-dependent and subject-independent experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饼干发布了新的文献求助10
刚刚
chen完成签到,获得积分10
1秒前
劝儿发布了新的文献求助10
1秒前
超帅彩虹完成签到 ,获得积分10
2秒前
欢呼的开山完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
7秒前
7秒前
原点完成签到,获得积分10
8秒前
9秒前
9秒前
SYLH应助清脆的水蜜桃采纳,获得10
9秒前
神勇饼干完成签到,获得积分10
10秒前
10秒前
牛轧唐完成签到,获得积分10
11秒前
11秒前
Winnie完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
夕照古风发布了新的文献求助10
13秒前
14秒前
辛勤的刺猬完成签到 ,获得积分10
14秒前
Dritsw应助唐僧洗发用飘柔采纳,获得10
15秒前
Whassupww完成签到,获得积分10
16秒前
神勇饼干发布了新的文献求助10
16秒前
看文献了发布了新的文献求助10
17秒前
小饼干完成签到,获得积分20
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
唐僧洗发用飘柔完成签到,获得积分20
20秒前
ChatGPT发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971732
求助须知:如何正确求助?哪些是违规求助? 3516385
关于积分的说明 11182415
捐赠科研通 3251598
什么是DOI,文献DOI怎么找? 1795960
邀请新用户注册赠送积分活动 876171
科研通“疑难数据库(出版商)”最低求助积分说明 805340