Aftershock ground motion prediction model based on conditional convolutional generative adversarial networks

计算机科学 卷积(计算机科学) 生成语法 余震 生成对抗网络 人工智能 模式识别(心理学) 算法 深度学习 地质学 人工神经网络 地震学
作者
Jiaxu Shen,Bo Ni,Yinjun Ding,Jiecheng Xiong,Zilan Zhong,Jun Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108354-108354 被引量:11
标识
DOI:10.1016/j.engappai.2024.108354
摘要

Strong mainshocks are typically accompanied by numerous aftershocks, and the investigation of the structural failure mechanisms under the mainshock-aftershock sequence becomes particularly crucial. However, the number of recorded mainshock-aftershock sequences is limited. Therefore, the purpose of this article is to provide a reasonable method for directly generating the aftershock time histories from mainshock time histories. Using convolutional network as the basic network layer and conditional generative adversarial network as the structure, two models, one-dimensional convolution (1D-C-DCGAN) and two-dimensional convolution (2D-C-DCGAN) are established respectively by utilizing the deep convolutional generative adversarial network to learn the relationship between the mainshock-aftershock time histories. Then, they are trained with 972 pairs of the selected mainshock-aftershock time histories, and prediction results are discussed in comparison. The results show that the two models are proficient in generating AS acceleration time histories that are closely related to the sample trend, in which the 2D-C-DCGAN model performing better in overall waveform prediction, but with local spikes. In the comparison of intensity measures and response spectra, by examining coefficients such as R2, RMSE, MAPE, the two models outperformed the mainstream model (ASK14) on the dataset, and the 2D-C-DCGAN model is more accurate than the 1D-C-DCGAN model. The distributions of intensity measure predicted by 2D-C-DCGAN model are closer to the measured intensity measures, and its predicted response spectra are smoother and better matched to the measured response spectra. This advantage can be attributed to the effectiveness of convolution operations on two-dimensional data, allowing the convolutional capabilities to be fully utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
刚刚
tao发布了新的文献求助10
1秒前
大大明童鞋完成签到,获得积分10
2秒前
多情怜蕾发布了新的文献求助10
2秒前
3秒前
123456完成签到 ,获得积分10
3秒前
无定发布了新的文献求助10
3秒前
阿曼尼完成签到 ,获得积分10
4秒前
4秒前
苏苏完成签到,获得积分10
5秒前
Dan菇凉发布了新的文献求助10
5秒前
kaiX发布了新的文献求助10
6秒前
LEE佳完成签到 ,获得积分10
6秒前
科研通AI5应助哒哒哒采纳,获得10
6秒前
成就的鹤完成签到,获得积分10
6秒前
6秒前
zipi完成签到,获得积分10
6秒前
燕儿应助132采纳,获得30
6秒前
6秒前
7秒前
乐乐应助咚咚采纳,获得10
7秒前
苹果摇伽完成签到,获得积分10
7秒前
上官若男应助大大明童鞋采纳,获得10
8秒前
yyyfff应助Orochimaru采纳,获得10
8秒前
8秒前
独特的秋应助淡淡的冰颜采纳,获得30
8秒前
Akim应助sang采纳,获得10
8秒前
8秒前
燕真完成签到,获得积分10
9秒前
小远远应助仁爱帆布鞋采纳,获得20
10秒前
无定完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
zqy完成签到,获得积分10
10秒前
LJJ完成签到,获得积分10
10秒前
虚幻的雪巧完成签到,获得积分10
10秒前
武原龙发布了新的文献求助10
11秒前
guozizi发布了新的文献求助50
11秒前
多情怜蕾完成签到,获得积分10
12秒前
材料生发布了新的文献求助10
12秒前
一诺相许完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723