Aftershock ground motion prediction model based on conditional convolutional generative adversarial networks

计算机科学 卷积(计算机科学) 生成语法 余震 生成对抗网络 人工智能 模式识别(心理学) 算法 深度学习 地质学 人工神经网络 地震学
作者
Jiaxu Shen,Bo Ni,Yinjun Ding,Jiecheng Xiong,Zilan Zhong,Jun Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108354-108354 被引量:11
标识
DOI:10.1016/j.engappai.2024.108354
摘要

Strong mainshocks are typically accompanied by numerous aftershocks, and the investigation of the structural failure mechanisms under the mainshock-aftershock sequence becomes particularly crucial. However, the number of recorded mainshock-aftershock sequences is limited. Therefore, the purpose of this article is to provide a reasonable method for directly generating the aftershock time histories from mainshock time histories. Using convolutional network as the basic network layer and conditional generative adversarial network as the structure, two models, one-dimensional convolution (1D-C-DCGAN) and two-dimensional convolution (2D-C-DCGAN) are established respectively by utilizing the deep convolutional generative adversarial network to learn the relationship between the mainshock-aftershock time histories. Then, they are trained with 972 pairs of the selected mainshock-aftershock time histories, and prediction results are discussed in comparison. The results show that the two models are proficient in generating AS acceleration time histories that are closely related to the sample trend, in which the 2D-C-DCGAN model performing better in overall waveform prediction, but with local spikes. In the comparison of intensity measures and response spectra, by examining coefficients such as R2, RMSE, MAPE, the two models outperformed the mainstream model (ASK14) on the dataset, and the 2D-C-DCGAN model is more accurate than the 1D-C-DCGAN model. The distributions of intensity measure predicted by 2D-C-DCGAN model are closer to the measured intensity measures, and its predicted response spectra are smoother and better matched to the measured response spectra. This advantage can be attributed to the effectiveness of convolution operations on two-dimensional data, allowing the convolutional capabilities to be fully utilized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HaohaoLi发布了新的文献求助10
1秒前
CipherSage应助鲍建芳采纳,获得30
2秒前
mss12138完成签到,获得积分10
3秒前
None完成签到,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
周新运完成签到,获得积分10
5秒前
雍不斜发布了新的文献求助10
5秒前
5秒前
明理的南风完成签到,获得积分10
6秒前
qcl完成签到,获得积分10
6秒前
安然无恙完成签到,获得积分10
6秒前
半夏完成签到,获得积分10
7秒前
玉鱼儿完成签到 ,获得积分10
7秒前
lf-leo完成签到,获得积分10
8秒前
Hello应助nyfz2002采纳,获得10
8秒前
Dandy发布了新的文献求助10
9秒前
大个应助科研通管家采纳,获得10
10秒前
lizhaoyu应助科研通管家采纳,获得10
10秒前
lizhaoyu应助科研通管家采纳,获得10
10秒前
沛沛完成签到,获得积分10
10秒前
lizhaoyu应助科研通管家采纳,获得10
10秒前
lizhaoyu应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
DijiaXu应助科研通管家采纳,获得10
10秒前
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得50
11秒前
ding应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研狗采纳,获得10
11秒前
Serendiply完成签到,获得积分10
12秒前
12秒前
dola完成签到,获得积分10
12秒前
kagami发布了新的文献求助10
12秒前
13秒前
忽然之间完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027