Aftershock ground motion prediction model based on conditional convolutional generative adversarial networks

计算机科学 卷积(计算机科学) 生成语法 余震 生成对抗网络 人工智能 模式识别(心理学) 算法 深度学习 地质学 人工神经网络 地震学
作者
Jiaxu Shen,Bo Ni,Yinjun Ding,Jiecheng Xiong,Zilan Zhong,Jun Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108354-108354 被引量:11
标识
DOI:10.1016/j.engappai.2024.108354
摘要

Strong mainshocks are typically accompanied by numerous aftershocks, and the investigation of the structural failure mechanisms under the mainshock-aftershock sequence becomes particularly crucial. However, the number of recorded mainshock-aftershock sequences is limited. Therefore, the purpose of this article is to provide a reasonable method for directly generating the aftershock time histories from mainshock time histories. Using convolutional network as the basic network layer and conditional generative adversarial network as the structure, two models, one-dimensional convolution (1D-C-DCGAN) and two-dimensional convolution (2D-C-DCGAN) are established respectively by utilizing the deep convolutional generative adversarial network to learn the relationship between the mainshock-aftershock time histories. Then, they are trained with 972 pairs of the selected mainshock-aftershock time histories, and prediction results are discussed in comparison. The results show that the two models are proficient in generating AS acceleration time histories that are closely related to the sample trend, in which the 2D-C-DCGAN model performing better in overall waveform prediction, but with local spikes. In the comparison of intensity measures and response spectra, by examining coefficients such as R2, RMSE, MAPE, the two models outperformed the mainstream model (ASK14) on the dataset, and the 2D-C-DCGAN model is more accurate than the 1D-C-DCGAN model. The distributions of intensity measure predicted by 2D-C-DCGAN model are closer to the measured intensity measures, and its predicted response spectra are smoother and better matched to the measured response spectra. This advantage can be attributed to the effectiveness of convolution operations on two-dimensional data, allowing the convolutional capabilities to be fully utilized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的夜安完成签到,获得积分10
1秒前
大饼饼饼发布了新的文献求助60
1秒前
Karl发布了新的文献求助10
2秒前
3秒前
夏樱完成签到,获得积分10
3秒前
饭团的老父亲完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
红叶完成签到,获得积分10
6秒前
斯文败类应助99采纳,获得10
6秒前
初心完成签到 ,获得积分10
7秒前
7秒前
niuniu顺利毕业完成签到 ,获得积分10
9秒前
甜蜜的荟完成签到,获得积分10
10秒前
CLY发布了新的文献求助10
10秒前
aa完成签到,获得积分10
10秒前
13秒前
聪明小丸子完成签到,获得积分10
13秒前
时尚中二完成签到,获得积分10
16秒前
燕燕完成签到,获得积分10
17秒前
爱笑的千寻完成签到,获得积分10
17秒前
一个小胖子完成签到,获得积分10
18秒前
zxt完成签到,获得积分10
20秒前
20秒前
甜甜圈完成签到 ,获得积分10
20秒前
kehe完成签到 ,获得积分10
20秒前
fuluyuzhe_668完成签到,获得积分10
21秒前
叶颤发布了新的文献求助20
21秒前
量子星尘发布了新的文献求助10
22秒前
Alex完成签到,获得积分10
22秒前
win完成签到 ,获得积分10
22秒前
田様应助大饼饼饼采纳,获得30
23秒前
吴旭东发布了新的文献求助10
24秒前
花卷完成签到,获得积分10
24秒前
熬夜波比应助yydy采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
小杨完成签到,获得积分10
25秒前
九号机完成签到 ,获得积分10
26秒前
淡定白枫完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071