MERF: A Practical HDR-Like Image Generator via Mutual-Guided Learning Between Multi-Exposure Registration and Fusion

计算机科学 人工智能 图像配准 重影 相互信息 图像融合 计算机视觉 融合 传感器融合 发电机(电路理论) 高动态范围 图像(数学) 动态范围 功率(物理) 哲学 语言学 物理 量子力学
作者
Wenhui Hong,Hao Zhang,Jiayi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2361-2376 被引量:1
标识
DOI:10.1109/tip.2024.3378176
摘要

In this paper, we present a novel high dynamic range (HDR)-like image generator that utilizes mutual-guided learning between multi-exposure registration and fusion, leading to promising dynamic multi-exposure image fusion. The method consists of three main components: the registration network, the fusion network, and the dual attention network which seamlessly integrates registration and fusion processes. Initially, within the registration network, the estimation of deformation fields among multi-exposure image sequences is conducted following an exposure-invariant feature extraction phase. This leads to enhanced accuracy by mitigating discrepancies across domains. Subsequently, the fusion network utilizes a progressive frequency fusion module in two distinct stages, addressing color correction and detail preservation within low and high-frequency domains, respectively. To facilitate the mutual enhancement of the registration and fusion networks, we undertake a mutual-guided learning strategy encompassing their physical connection and constraint paradigm. Firstly, a dual attention network bridges the registration and fusion networks, addressing ghosting, which is beyond the scope of registration and facilitates information exchange between input images. Secondly, a meticulously designed generative adversarial network-like iterative training schema guides the overall network framework, thereby yielding high-quality HDR-like images through mutual enhancement. Comprehensive experiments on publicly available datasets validate the superiority of our method over existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxn完成签到,获得积分10
刚刚
奋斗尔安完成签到,获得积分10
刚刚
沙拉发布了新的文献求助10
1秒前
hajy完成签到 ,获得积分10
1秒前
单纯寒凝发布了新的文献求助10
1秒前
1秒前
junzilan发布了新的文献求助10
1秒前
田様应助卡卡采纳,获得10
2秒前
Zezezee发布了新的文献求助10
4秒前
复杂的问玉完成签到,获得积分20
5秒前
6秒前
6秒前
睡睡完成签到,获得积分10
6秒前
7秒前
8秒前
所所应助饕餮采纳,获得10
8秒前
平淡小凝发布了新的文献求助10
8秒前
nihaoxiaoai完成签到,获得积分10
9秒前
完美世界应助英俊的汉堡采纳,获得10
9秒前
爱静静应助hehe采纳,获得10
10秒前
九城发布了新的文献求助20
10秒前
斯文败类应助高君奇采纳,获得10
10秒前
小二郎应助特兰克斯采纳,获得10
10秒前
mojomars发布了新的文献求助10
10秒前
吃嘛嘛香完成签到,获得积分10
10秒前
wqy发布了新的文献求助10
11秒前
天天快乐应助新的心跳采纳,获得10
11秒前
Orange应助有益采纳,获得10
11秒前
13秒前
爆米花应助marinemiao采纳,获得10
13秒前
13秒前
招财不肥发布了新的文献求助10
14秒前
网安真难T_T完成签到,获得积分10
14秒前
大土豆子完成签到,获得积分10
15秒前
15秒前
甜甜醉波发布了新的文献求助10
16秒前
CodeCraft应助jy采纳,获得10
16秒前
领导范儿应助睡睡采纳,获得10
16秒前
哈哈完成签到 ,获得积分10
17秒前
Holleay123发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808