Leveraging multivariate approaches to advance the science of early-life adversity

心理学 多元统计 聚类分析 领域(数学) 数据科学 鉴定(生物学) 多元分析 计算机科学 人工智能 机器学习 数学 植物 生物 纯数学
作者
Alexis Brieant,Lucinda M. Sisk,Taylor J. Keding,Emily M. Cohodes,Dylan G. Gee
出处
期刊:Child Abuse & Neglect [Elsevier]
卷期号:: 106754-106754 被引量:3
标识
DOI:10.1016/j.chiabu.2024.106754
摘要

Since the landmark Adverse Childhood Experiences (ACEs) study, adversity research has expanded to more precisely account for the multifaceted nature of adverse experiences. The complex data structures and interrelated nature of adversity data require robust multivariate statistical methods, and recent methodological and statistical innovations have facilitated advancements in research on childhood adversity. Here, we provide an overview of a subset of multivariate methods that we believe hold particular promise for advancing the field's understanding of early-life adversity, and discuss how these approaches can be practically applied to explore different research questions. This review covers data-driven or unsupervised approaches (including dimensionality reduction and person-centered clustering/subtype identification) as well as supervised/prediction-based approaches (including linear and tree-based models and neural networks). For each, we highlight studies that have effectively applied the method to provide novel insight into early-life adversity. Taken together, we hope this review serves as a resource to adversity researchers looking to expand upon the cumulative approach described in the original ACEs study, thereby advancing the field's understanding of the complexity of adversity and related developmental consequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿格发布了新的文献求助10
1秒前
2秒前
能干的尔竹应助MechaniKer采纳,获得10
3秒前
田様应助周文凯采纳,获得10
3秒前
dove完成签到,获得积分10
3秒前
暄暄大王发布了新的文献求助10
4秒前
a水爱科研发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
高高友桃发布了新的文献求助10
7秒前
7秒前
在水一方应助sunshiying采纳,获得10
8秒前
852应助wang采纳,获得10
8秒前
zhonglv7应助科研通管家采纳,获得10
9秒前
lzhgoashore发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
changping应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
lalala应助科研通管家采纳,获得10
9秒前
香蕉觅云应助懦弱的博涛采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
changping应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
lalala应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
11秒前
月宸发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400