MM-Net: A MixFormer-Based Multi-Scale Network for Anatomical and Functional Image Fusion

图像融合 计算机科学 人工智能 融合 模式识别(心理学) 特征(语言学) 融合规则 源代码 一般化 水准点(测量) 图像(数学) 领域(数学分析) 比例(比率) 数学 哲学 语言学 物理 量子力学 数学分析 大地测量学 地理 操作系统
作者
Yü Liu,Chen Yu,Juan Cheng,Z. Jane Wang,Xun Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2197-2212 被引量:6
标识
DOI:10.1109/tip.2024.3374072
摘要

Anatomical and functional image fusion is an important technique in a variety of medical and biological applications. Recently, deep learning (DL)-based methods have become a mainstream direction in the field of multi-modal image fusion. However, existing DL-based fusion approaches have difficulty in effectively capturing local features and global contextual information simultaneously. In addition, the scale diversity of features, which is a crucial issue in image fusion, often lacks adequate attention in most existing works. In this paper, to address the above problems, we propose a MixFormer-based multi-scale network, termed as MM-Net, for anatomical and functional image fusion. In our method, an improved MixFormer-based backbone is introduced to sufficiently extract both local features and global contextual information at multiple scales from the source images. The features from different source images are fused at multiple scales based on a multi-source spatial attention-based cross-modality feature fusion (CMFF) module. The scale diversity of the fused features is further enriched by a series of multi-scale feature interaction (MSFI) modules and feature aggregation upsample (FAU) modules. Moreover, a loss function consisting of both spatial domain and frequency domain components is devised to train the proposed fusion model. Experimental results demonstrate that our method outperforms several state-of-the-art fusion methods on both qualitative and quantitative comparisons, and the proposed fusion model exhibits good generalization capability. The source code of our fusion method will be available at https://github.com/yuliu316316.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
勤恳函完成签到,获得积分10
2秒前
阿柴辣么可爱关注了科研通微信公众号
2秒前
2秒前
青柠完成签到,获得积分10
3秒前
hs发布了新的文献求助30
3秒前
zjm发布了新的文献求助10
3秒前
3秒前
董泽云发布了新的文献求助10
3秒前
5秒前
leeyee发布了新的文献求助10
5秒前
5秒前
xiang发布了新的文献求助10
6秒前
zdx12324完成签到,获得积分10
7秒前
一纸墨香完成签到,获得积分10
7秒前
haiferse发布了新的文献求助10
7秒前
隐形的雨寒完成签到,获得积分20
10秒前
李爱国应助笑点低的元枫采纳,获得10
10秒前
Tuesma完成签到 ,获得积分10
10秒前
XYH发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助penshegui采纳,获得10
11秒前
cctv18应助satoha采纳,获得30
11秒前
鄂坤发布了新的文献求助10
12秒前
13秒前
14秒前
所所应助沉默的蓝天采纳,获得10
14秒前
vjin完成签到,获得积分10
16秒前
17秒前
20秒前
笑点低的元枫完成签到,获得积分10
20秒前
liwei发布了新的文献求助10
20秒前
爆米花应助vjin采纳,获得10
20秒前
CX完成签到 ,获得积分10
21秒前
replay完成签到,获得积分10
22秒前
小朋友王致和完成签到,获得积分20
22秒前
donson完成签到,获得积分10
23秒前
FashionBoy应助顺其自然采纳,获得10
25秒前
focus完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The potential of upadacitinib in treating co-occurring atopic dermatitis and ulcerative colitis 200
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696214
求助须知:如何正确求助?哪些是违规求助? 3248178
关于积分的说明 9856417
捐赠科研通 2959686
什么是DOI,文献DOI怎么找? 1622819
邀请新用户注册赠送积分活动 768283
科研通“疑难数据库(出版商)”最低求助积分说明 741451