Automatic and real-time tissue sensing for autonomous intestinal anastomosis using hybrid MLP-DC-CNN classifier-based optical coherence tomography

光学相干层析成像 计算机科学 人工智能 漫反射光学成像 断层摄影术 吻合 分类器(UML) 光学层析成像 计算机视觉 光学 模式识别(心理学) 医学 物理 迭代重建 外科
作者
Yaning Wang,Shuwen Wei,Ruizhi Zuo,Michael Kam,Justin D. Opfermann,Idris O. Sunmola,Michael H. Hsieh,Axel Krieger,Jin U Kang
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:15 (4): 2543-2543 被引量:1
标识
DOI:10.1364/boe.521652
摘要

Anastomosis is a common and critical part of reconstructive procedures within gastrointestinal, urologic, and gynecologic surgery. The use of autonomous surgical robots such as the smart tissue autonomous robot (STAR) system demonstrates an improved efficiency and consistency of the laparoscopic small bowel anastomosis over the current da Vinci surgical system. However, the STAR workflow requires auxiliary manual monitoring during the suturing procedure to avoid missed or wrong stitches. To eliminate this monitoring task from the operators, we integrated an optical coherence tomography (OCT) fiber sensor with the suture tool and developed an automatic tissue classification algorithm for detecting missed or wrong stitches in real time. The classification results were updated and sent to the control loop of STAR robot in real time. The suture tool was guided to approach the object by a dual-camera system. If the tissue inside the tool jaw was inconsistent with the desired suture pattern, a warning message would be generated. The proposed hybrid multilayer perceptron dual-channel convolutional neural network (MLP-DC-CNN) classification platform can automatically classify eight different abdominal tissue types that require different suture strategies for anastomosis. In MLP, numerous handcrafted features (∼1955) were utilized including optical properties and morphological features of one-dimensional (1D) OCT A-line signals. In DC-CNN, intensity-based features and depth-resolved tissues' attenuation coefficients were fully exploited. A decision fusion technique was applied to leverage the information collected from both classifiers to further increase the accuracy. The algorithm was evaluated on 69,773 testing A-line data. The results showed that our model can classify the 1D OCT signals of small bowels in real time with an accuracy of 90.06%, a precision of 88.34%, and a sensitivity of 87.29%, respectively. The refresh rate of the displayed A-line signals was set as 300 Hz, the maximum sensing depth of the fiber was 3.6 mm, and the running time of the image processing algorithm was ∼1.56 s for 1,024 A-lines. The proposed fully automated tissue sensing model outperformed the single classifier of CNN, MLP, or SVM with optimized architectures, showing the complementarity of different feature sets and network architectures in classifying intestinal OCT A-line signals. It can potentially reduce the manual involvement of robotic laparoscopic surgery, which is a crucial step towards a fully autonomous STAR system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助汕头凯奇采纳,获得10
刚刚
思源应助keke采纳,获得10
2秒前
5秒前
77MM完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
充电宝应助lz采纳,获得10
9秒前
王白纸发布了新的文献求助10
9秒前
1234应助北风采纳,获得10
9秒前
Ryouji完成签到,获得积分10
11秒前
木子发布了新的文献求助10
11秒前
慕青应助殷勤的非笑采纳,获得10
12秒前
13秒前
T拐拐发布了新的文献求助10
14秒前
落后爆米花完成签到,获得积分10
16秒前
18秒前
七弦琴无心请问完成签到,获得积分10
18秒前
20秒前
20秒前
20秒前
zila完成签到,获得积分10
21秒前
22秒前
22秒前
Skyfall发布了新的文献求助10
25秒前
玉玉发布了新的文献求助10
25秒前
会飞的帝企鹅完成签到,获得积分10
28秒前
28秒前
兴奋棒球给兴奋棒球的求助进行了留言
29秒前
科研通AI2S应助北风采纳,获得10
30秒前
30秒前
冷酷愚志完成签到,获得积分10
31秒前
乐乐应助子勋采纳,获得10
33秒前
LZ完成签到,获得积分10
33秒前
小智0921完成签到,获得积分10
33秒前
咚嗒嗒发布了新的文献求助10
33秒前
Yang发布了新的文献求助10
34秒前
kkk完成签到 ,获得积分10
35秒前
keke发布了新的文献求助10
37秒前
杨阳洋发布了新的文献求助20
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907076
关于积分的说明 8340494
捐赠科研通 2577712
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967