计算机科学
编码器
编码(集合论)
领域(数学)
语言模型
人工智能
自然语言处理
程序设计语言
数学
集合(抽象数据类型)
纯数学
操作系统
作者
Haotian Liu,Chunyuan Li,Qingyang Wu,Yong Jae Lee
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:307
标识
DOI:10.48550/arxiv.2304.08485
摘要
Instruction tuning large language models (LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks, but the idea is less explored in the multimodal field. In this paper, we present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data. By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language understanding.Our early experiments show that LLaVA demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make GPT-4 generated visual instruction tuning data, our model and code base publicly available.
科研通智能强力驱动
Strongly Powered by AbleSci AI