Assessing the potential of mobile laser scanning for stand-level forest inventories in near-natural forests

断面积 激光扫描 均方误差 比例(比率) 森林资源清查 统计 环境科学 样品(材料) 激光雷达 遥感 森林经营 林业 地理 数学 计算机科学 地图学 激光器 物理 化学 光学 色谱法
作者
Can Vatandaşlar,Mehmet Seki,Mustafa Zeybek
出处
期刊:Forestry [Oxford University Press]
卷期号:96 (4): 448-464 被引量:10
标识
DOI:10.1093/forestry/cpad016
摘要

Abstract Recent advances in LiDAR sensors and robotic technologies have raised the question of whether handheld mobile laser scanning (HMLS) systems can allow for the performing of forest inventories (FIs) without the use of conventional ground measurement (CGM) techniques. However, the reliability of such an approach for forest planning applications, particularly in non-uniform forests under mountainous conditions, remains underexplored. This study aims to address these issues by assessing the accuracy of HMLS-derived data based on the calculation of basic forest attributes such as the number of trees, dominant height and basal area. To this end, near-natural forests of a national park (NE Türkiye) were surveyed using the HMLS and CGM techniques for a management plan renewal project. Taking CGM results as reference, we compared each forest attribute pair based on two datasets collected from 39 sample plots at the forest (landscape) scale. Diameter distributions and the influence of stand characteristics on HMLS data accuracy were also analyzed at the plot scale. The statistical results showed no significant difference between the two datasets for any investigated forest attributes (P > 0.05). The most and the least accurately calculated attributes were quadratic mean diameter (root mean square error (RMSE) = 1.3 cm, 4.5 per cent) and stand volume (RMSE = 93.7 m3 ha−1, 16.4 per cent), respectively. The stand volume bias was minimal at the forest scale (15.65 m3 ha−1, 3.11 per cent), but the relative bias increased to 72.1 per cent in a mixed forest plot with many small and multiple-stemmed trees. On the other hand, a strong negative relationship was detected between stand maturation and estimation errors. The accuracy of HMLS data considerably improved with increased mean diameter, basal area and stand volume values. Eventually, we conclude that many forest attributes can be quantified using HMLS at an accuracy level required by forest planning and management-related decision making. However, there is still a need for CGM in FIs to capture qualitative attributes, such as species mix and stem quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈娜娜完成签到,获得积分10
刚刚
XIEQ发布了新的文献求助10
刚刚
刚刚
1秒前
清晾油完成签到,获得积分10
1秒前
Akim应助wanhe采纳,获得10
3秒前
赘婿应助Solitary采纳,获得10
3秒前
香蕉诗蕊应助zj采纳,获得10
3秒前
万能图书馆应助张nmky采纳,获得10
4秒前
4秒前
DXL发布了新的文献求助10
5秒前
红红发布了新的文献求助10
5秒前
6秒前
哇owao完成签到,获得积分10
7秒前
7秒前
好吗好的发布了新的文献求助10
7秒前
天菱完成签到,获得积分10
9秒前
梅梅也完成签到,获得积分10
9秒前
朴实雪兰发布了新的文献求助10
9秒前
x111发布了新的文献求助10
9秒前
Lucas应助缓慢的含双采纳,获得10
10秒前
旱田蜗牛发布了新的文献求助10
11秒前
wanci应助选波采纳,获得10
12秒前
充电宝应助秀丽的平彤采纳,获得10
12秒前
科研通AI2S应助77777采纳,获得10
13秒前
13秒前
Rossie完成签到,获得积分10
13秒前
领导范儿应助x111采纳,获得10
14秒前
梅梅也发布了新的文献求助10
14秒前
lius应助好吗好的采纳,获得10
15秒前
15秒前
wuyanyixie完成签到 ,获得积分20
16秒前
浮游应助idemipere采纳,获得10
16秒前
xinmi完成签到,获得积分10
16秒前
18秒前
18秒前
20秒前
义气山柳完成签到,获得积分10
20秒前
jiahhhao发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413