Assessing the potential of mobile laser scanning for stand-level forest inventories in near-natural forests

断面积 激光扫描 均方误差 比例(比率) 森林资源清查 统计 环境科学 样品(材料) 激光雷达 遥感 森林经营 林业 地理 数学 计算机科学 地图学 激光器 物理 化学 光学 色谱法
作者
Can Vatandaşlar,Mehmet Seki,Mustafa Zeybek
出处
期刊:Forestry [Oxford University Press]
卷期号:96 (4): 448-464 被引量:10
标识
DOI:10.1093/forestry/cpad016
摘要

Abstract Recent advances in LiDAR sensors and robotic technologies have raised the question of whether handheld mobile laser scanning (HMLS) systems can allow for the performing of forest inventories (FIs) without the use of conventional ground measurement (CGM) techniques. However, the reliability of such an approach for forest planning applications, particularly in non-uniform forests under mountainous conditions, remains underexplored. This study aims to address these issues by assessing the accuracy of HMLS-derived data based on the calculation of basic forest attributes such as the number of trees, dominant height and basal area. To this end, near-natural forests of a national park (NE Türkiye) were surveyed using the HMLS and CGM techniques for a management plan renewal project. Taking CGM results as reference, we compared each forest attribute pair based on two datasets collected from 39 sample plots at the forest (landscape) scale. Diameter distributions and the influence of stand characteristics on HMLS data accuracy were also analyzed at the plot scale. The statistical results showed no significant difference between the two datasets for any investigated forest attributes (P > 0.05). The most and the least accurately calculated attributes were quadratic mean diameter (root mean square error (RMSE) = 1.3 cm, 4.5 per cent) and stand volume (RMSE = 93.7 m3 ha−1, 16.4 per cent), respectively. The stand volume bias was minimal at the forest scale (15.65 m3 ha−1, 3.11 per cent), but the relative bias increased to 72.1 per cent in a mixed forest plot with many small and multiple-stemmed trees. On the other hand, a strong negative relationship was detected between stand maturation and estimation errors. The accuracy of HMLS data considerably improved with increased mean diameter, basal area and stand volume values. Eventually, we conclude that many forest attributes can be quantified using HMLS at an accuracy level required by forest planning and management-related decision making. However, there is still a need for CGM in FIs to capture qualitative attributes, such as species mix and stem quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wing完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
战国瞳发布了新的文献求助10
2秒前
晴清发布了新的文献求助10
3秒前
小一完成签到,获得积分20
3秒前
3秒前
LMW应助怡然白竹采纳,获得10
4秒前
雪白元蝶发布了新的文献求助10
4秒前
4秒前
啊凡发布了新的文献求助10
4秒前
wanci应助舒心的初露采纳,获得10
5秒前
朱佳慧完成签到,获得积分10
5秒前
Akim应助小泡泡采纳,获得10
6秒前
咎如天完成签到,获得积分10
6秒前
Hoyshin发布了新的文献求助10
6秒前
6秒前
Bio应助韦老虎采纳,获得30
7秒前
xpdnpu发布了新的文献求助30
7秒前
优雅的念露完成签到,获得积分10
8秒前
FashionBoy应助pmx采纳,获得10
8秒前
8秒前
清脆乐曲发布了新的文献求助10
9秒前
9秒前
彭于晏应助战国瞳采纳,获得10
9秒前
王贺发布了新的文献求助10
9秒前
Chrischelsea发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助50
10秒前
自然的南露完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
K甲发布了新的文献求助10
11秒前
典雅的幼菱完成签到 ,获得积分20
11秒前
华仔应助老迟到的幼枫采纳,获得10
12秒前
13秒前
李西瓜完成签到 ,获得积分10
13秒前
啊凡完成签到,获得积分10
14秒前
orixero应助Sun_Chen采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025