已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing the potential of mobile laser scanning for stand-level forest inventories in near-natural forests

断面积 激光扫描 均方误差 比例(比率) 森林资源清查 统计 环境科学 样品(材料) 激光雷达 遥感 森林经营 林业 地理 数学 计算机科学 地图学 激光器 物理 化学 光学 色谱法
作者
Can Vatandaşlar,Mehmet Seki,Mustafa Zeybek
出处
期刊:Forestry [Oxford University Press]
卷期号:96 (4): 448-464 被引量:10
标识
DOI:10.1093/forestry/cpad016
摘要

Abstract Recent advances in LiDAR sensors and robotic technologies have raised the question of whether handheld mobile laser scanning (HMLS) systems can allow for the performing of forest inventories (FIs) without the use of conventional ground measurement (CGM) techniques. However, the reliability of such an approach for forest planning applications, particularly in non-uniform forests under mountainous conditions, remains underexplored. This study aims to address these issues by assessing the accuracy of HMLS-derived data based on the calculation of basic forest attributes such as the number of trees, dominant height and basal area. To this end, near-natural forests of a national park (NE Türkiye) were surveyed using the HMLS and CGM techniques for a management plan renewal project. Taking CGM results as reference, we compared each forest attribute pair based on two datasets collected from 39 sample plots at the forest (landscape) scale. Diameter distributions and the influence of stand characteristics on HMLS data accuracy were also analyzed at the plot scale. The statistical results showed no significant difference between the two datasets for any investigated forest attributes (P > 0.05). The most and the least accurately calculated attributes were quadratic mean diameter (root mean square error (RMSE) = 1.3 cm, 4.5 per cent) and stand volume (RMSE = 93.7 m3 ha−1, 16.4 per cent), respectively. The stand volume bias was minimal at the forest scale (15.65 m3 ha−1, 3.11 per cent), but the relative bias increased to 72.1 per cent in a mixed forest plot with many small and multiple-stemmed trees. On the other hand, a strong negative relationship was detected between stand maturation and estimation errors. The accuracy of HMLS data considerably improved with increased mean diameter, basal area and stand volume values. Eventually, we conclude that many forest attributes can be quantified using HMLS at an accuracy level required by forest planning and management-related decision making. However, there is still a need for CGM in FIs to capture qualitative attributes, such as species mix and stem quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Yxs采纳,获得10
2秒前
lili完成签到 ,获得积分10
2秒前
蔷薇完成签到 ,获得积分10
4秒前
困困完成签到 ,获得积分10
5秒前
哇哇哇完成签到 ,获得积分10
7秒前
搜集达人应助lbw采纳,获得10
7秒前
阳光的衫完成签到,获得积分10
8秒前
体贴琳完成签到 ,获得积分10
8秒前
星辰大海应助666采纳,获得10
11秒前
影1发布了新的文献求助10
11秒前
欢呼宛秋完成签到,获得积分10
13秒前
13秒前
14秒前
Suraim完成签到,获得积分10
14秒前
情怀应助好好好采纳,获得10
15秒前
坚守完成签到 ,获得积分10
16秒前
白沙湾完成签到,获得积分10
17秒前
大门神发布了新的文献求助10
19秒前
沈澜完成签到 ,获得积分10
20秒前
一榔头发布了新的文献求助10
21秒前
田様应助一榔头采纳,获得20
26秒前
27秒前
李健应助momo采纳,获得10
28秒前
weirdog给weirdog的求助进行了留言
28秒前
斯文败类应助何茂郎采纳,获得10
28秒前
魔幻冰棍完成签到 ,获得积分10
28秒前
懵懂的小夏完成签到,获得积分10
29秒前
wl完成签到 ,获得积分10
29秒前
wink完成签到 ,获得积分10
30秒前
激情的健柏完成签到 ,获得积分10
32秒前
大玉124完成签到 ,获得积分10
33秒前
coco完成签到 ,获得积分10
33秒前
35秒前
无极微光应助irisy采纳,获得20
36秒前
36秒前
chen完成签到,获得积分20
37秒前
37秒前
17852573662完成签到,获得积分10
38秒前
Yxs发布了新的文献求助10
39秒前
酒渡完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759