Partition Map Prediction for Fast Block Partitioning in VVC Intra-Frame Coding

四叉树 分拆(数论) 计算机科学 编码(社会科学) 划分问题 树形结构 算法 块(置换群论) 卷积神经网络 算法效率 二叉树 数学 人工智能 几何学 统计 组合数学
作者
Aolin Feng,Kang Liu,Dong Liu,Li Li,Feng Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2237-2251 被引量:1
标识
DOI:10.1109/tip.2023.3266165
摘要

The Versatile Video Coding (VVC) standard introduces a block partitioning structure known as quadtree plus nested multi-type tree (QTMTT), which allows more flexible block partitioning compared to its predecessors, like High Efficiency Video Coding (HEVC). Meanwhile, the partition search (PS) process, which is to find out the best partitioning structure for optimizing the rate-distortion cost, becomes far more complicated for VVC than for HEVC. Also, the PS process in VVC reference software (VTM) is not friendly to hardware implementation. We propose a partition map prediction method for fast block partitioning in VVC intra-frame encoding. The proposed method may replace PS totally or be combined with PS partially, thereby achieving adjustable acceleration of the VTM intra-frame encoding. Different from the previous methods for fast block partitioning, we propose to represent a QTMTT-based block partitioning structure by a partition map, which consists of a quadtree (QT) depth map, several multi-type tree (MTT) depth maps, and several MTT direction maps. We then propose to predict the optimal partition map from the pixels through a convolutional neural network (CNN). We propose a CNN structure, known as Down-Up-CNN, for the partition map prediction, where the CNN structure emulates the recursive nature of the PS process. Moreover, we design a post-processing algorithm to adjust the network output partition map, so as to obtain a standard-compliant block partitioning structure. The post-processing algorithm may produce a partial partition tree as well; then based on the partial partition tree, the PS process is performed to obtain the full tree. Experimental results show that the proposed method achieves 1.61× to 8.64× encoding acceleration for the VTM-10.0 intra-frame encoder, with the ratio depending on how much PS is performed. Especially, when achieving 3.89× encoding acceleration, the compression efficiency loss is 2.77% in BD-rate, which is a better tradeoff than the previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火火火小朋友完成签到 ,获得积分10
刚刚
刚刚
JS完成签到,获得积分10
7秒前
lixiang完成签到 ,获得积分10
9秒前
9秒前
星丶完成签到 ,获得积分10
13秒前
结实的丹雪完成签到,获得积分10
13秒前
lixiaolu完成签到 ,获得积分10
14秒前
大模型应助粗心的智慧采纳,获得10
15秒前
小小百发布了新的文献求助10
15秒前
沙里飞完成签到 ,获得积分10
18秒前
文静紫霜完成签到 ,获得积分10
20秒前
Sun1c7完成签到,获得积分10
20秒前
王欣完成签到 ,获得积分10
22秒前
害羞的墨镜完成签到,获得积分10
25秒前
gmc完成签到 ,获得积分10
25秒前
27秒前
sydhwo完成签到 ,获得积分10
28秒前
小宋爱科研完成签到 ,获得积分10
30秒前
勤劳绿毛龟完成签到,获得积分10
32秒前
暖羊羊Y完成签到 ,获得积分10
32秒前
chen完成签到,获得积分10
33秒前
我爱科研完成签到 ,获得积分10
34秒前
执着夏山完成签到,获得积分10
35秒前
喜乐完成签到,获得积分20
38秒前
霍霍完成签到 ,获得积分10
39秒前
leaolf完成签到,获得积分10
39秒前
一三二五七完成签到 ,获得积分10
40秒前
ACMI完成签到,获得积分10
42秒前
完美世界应助不解释采纳,获得10
45秒前
LI完成签到,获得积分10
47秒前
白桃乌龙完成签到,获得积分10
49秒前
笨笨烨华完成签到 ,获得积分10
52秒前
Zyq1231完成签到,获得积分10
53秒前
哈哈完成签到 ,获得积分10
57秒前
飞龙在天完成签到,获得积分0
1分钟前
轻松的雨竹完成签到 ,获得积分10
1分钟前
1分钟前
追寻奇迹完成签到 ,获得积分10
1分钟前
在下常威完成签到,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339162
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628112
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180