Application of circuit analog optimization method in fast optimization of dynamically tunable terahertz metamaterial sensor

电容电路 太赫兹辐射 超材料 谐振器 等效电路 分裂环谐振器 电磁感应透明 计算机科学 电子工程 物理 声学 光电子学 电容器 工程类 量子力学 电压
作者
Dapeng Zhang,Zhi Li,Bowen Jia,Yuan Tang,Zhen Yang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:98 (6): 065502-065502 被引量:1
标识
DOI:10.1088/1402-4896/acce80
摘要

Abstract The simulation design of terahertz metamaterial sensors with dynamically tunable parameters typically relies on manual parameter tuning for structural optimization. However, this method is often prone to subjective factors and suffer from issues such as frequent reconstruction of simulations, high computational costs, long processing times, and suboptimal optimization results. In this paper, we propose a circuit analog optimization method (CAOM), which constructs equivalent RLC parameters to achieve a highly fitted terahertz transmission spectrum frequency obtained from CST full-wave numerical simulation. To validate the effectiveness of the proposed model, we use a typical periodic structure unit, a double-nested split ring resonator (DSRR) terahertz metamaterial sensor, as the simulation object. Both the inner and outer open resonant rings of the sensor are made of graphene, as a result, the opening size and Fermi level of the resonant rings are dynamically tunable. The results of the validation demonstrate that the adjustments of the sensor parameters can be effectively mapped by the changes of the equivalent RLC parameters. And the proposed equivalent circuit model has parameter substitutability in the simulation modeling of split ring resonator type sensors. The proposed equivalent circuit model exhibits parameter substitution in the simulation modeling of open resonant ring-type sensors. To achieve optimal sensing performance for the electromagnetically induced transparency (EIT)-like resonant peak (with a resonant frequency of f 2 ) of the sensor under constrained conditions, we introduce the genetic algorithm (GA) into the equivalent circuit model to enable fast optimization of the opening sizes of the inner and outer resonant rings, as well as the Fermi level of the sensor. Moreover, the accuracy of the optimization results is verified by CST simulations. Finally, the optimization results show that the optimal FOM of the EIT-like resonant peak within the given parameter range is 0.712, which is greater than that of any randomly combined parameters. This numerical result demonstrates the effectiveness of the proposed CAOM. The proposed model and optimization method have potentials to inspire further research in device design, performance optimization, theoretical modeling, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助张浩毅采纳,获得10
刚刚
乔乔兔发布了新的文献求助10
2秒前
Lily完成签到,获得积分10
2秒前
浅笑成风发布了新的文献求助10
3秒前
星辰大海应助hh77采纳,获得20
3秒前
XSB完成签到,获得积分10
3秒前
7秒前
斯文败类应助崔艺笛采纳,获得10
8秒前
CM发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
汉堡包应助愤怒的小鸽子采纳,获得10
13秒前
lll发布了新的文献求助10
13秒前
张浩毅发布了新的文献求助10
14秒前
Connie完成签到,获得积分10
15秒前
在水一方应助我会好好的采纳,获得10
15秒前
111完成签到,获得积分10
16秒前
16秒前
Lucas应助邢寻冬采纳,获得10
17秒前
sadascaqwqw发布了新的文献求助10
18秒前
18秒前
19秒前
乐观的涵菱完成签到,获得积分10
19秒前
20秒前
20秒前
SWL发布了新的文献求助10
21秒前
大个应助CC采纳,获得10
21秒前
无花果应助JianmaoChen采纳,获得10
22秒前
小鱼仔仔发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
香蕉觅云应助EddieDream采纳,获得10
24秒前
孟冬完成签到 ,获得积分20
24秒前
25秒前
25秒前
廖L_发布了新的文献求助10
27秒前
lyg完成签到,获得积分10
27秒前
Tara完成签到,获得积分20
27秒前
hh77发布了新的文献求助20
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821