电解质
材料科学
深共晶溶剂
乙二醇
化学工程
氯化胆碱
离子电导率
超级电容器
离子液体
阳极
氯化物
无机化学
共晶体系
电容
化学
复合材料
有机化学
微观结构
冶金
电极
物理化学
工程类
催化作用
作者
Zhongxu Li,Xueer Xu,Zhao Jiang,Jiayi Chen,Jiangping Tu,Xiuli Wang,Changdong Gu
标识
DOI:10.1021/acsami.2c12103
摘要
A eutectogel (ETG) based on immobilizing a zinc salt deep eutectic solvent (DES) in a silk protein backbone is prepared by a coagulating bath method as a solid electrolyte for Zn-ion hybrid supercapacitors (ZHSCs). The Zn salt DES is composed by ethylene glycol (EG), urea, choline chloride (ChCl), and zinc chloride (ZnCl2) with a molar ratio of 6:10:3:3. A strong bonding of the DES liquid to the silk protein backbone is formed between protein macromolecules and the DES due to plenty of hydrogen bonds in both materials. The as-prepared ETG membrane is dense and has no obvious void defects, which possesses a fracture strength of 7.58 MPa and environmental stability. As a solid electrolyte, the ETG membrane exhibits a higher Zn2+ transference number of about 0.60 and a high ionic conductivity (12.31 mS cm-1 at room temperature and 3.63 mS cm-1 at -20 °C). A ZHSC (Zn∥ETG∥C) with the silk protein-based ETG electrolyte is assembled by Zn and active carbon as the anode and the cathode, respectively, which delivers a specific capacitance of 342.8 F g-1 at a current density of 0.2 A g-1 and maintains excellent cycling stability with 80% capacitance retention after 20,000 cycles at a high current rate (5 A g-1) at room temperature. Moreover, the Zn∥ETG∥C device can safely work under a lower temperature of about -18 °C and damaging situations, such as folding states and even cutting tests. The interface evolutions between the Zn anode and the ETG electrolyte are explored, and it was found that a ZnCO3/Zn(CH2OCO2)2 solid electrolyte interphase is in situ formed on the Zn anode, which can inhibit the growth of Zn dendrites. This work provides a new way to fabricate advanced electrolytes for applications in Zn-ion hybrid supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI