Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Kumar,Sangeeta Singh,Mustafa K. A. Mohammed,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:17
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOXXXiii完成签到,获得积分10
1秒前
1秒前
1秒前
orixero应助泽秀儿采纳,获得10
1秒前
2秒前
mark2021发布了新的文献求助60
2秒前
slmj完成签到,获得积分10
2秒前
nnnaaaa完成签到,获得积分10
3秒前
lixia完成签到 ,获得积分10
3秒前
英姑应助roosterpan采纳,获得10
4秒前
5秒前
壮观觅柔发布了新的文献求助30
5秒前
活泼的如容完成签到,获得积分20
6秒前
哈哈哈66发布了新的文献求助10
6秒前
yoo发布了新的文献求助10
7秒前
7秒前
8秒前
上官若男应助冷傲迎梦采纳,获得10
8秒前
8秒前
9秒前
Lorayacarat发布了新的文献求助10
10秒前
lsl应助TXZ06采纳,获得30
10秒前
10秒前
小马甲应助wuxunxun2015采纳,获得10
10秒前
高大以南完成签到,获得积分10
12秒前
富贵临完成签到,获得积分10
12秒前
Helium发布了新的文献求助10
12秒前
12秒前
诸怀曼发布了新的文献求助10
12秒前
许某希完成签到 ,获得积分10
13秒前
13秒前
13秒前
张澳发布了新的文献求助10
13秒前
殷勤的问玉完成签到 ,获得积分10
14秒前
科研NM发布了新的文献求助10
14秒前
8899发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
FashionBoy应助如愿常隐行采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559