Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Kumar,Sangeeta Singh,Mustafa K. A. Mohammed,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:17
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单的可乐完成签到,获得积分10
刚刚
科研通AI6应助哈no采纳,获得10
1秒前
完美世界应助YE采纳,获得10
1秒前
wxn发布了新的文献求助10
1秒前
Ava应助Hinsen采纳,获得10
2秒前
2秒前
伊伊发布了新的文献求助10
3秒前
www111发布了新的文献求助10
4秒前
wxn完成签到,获得积分20
4秒前
高访蕊完成签到,获得积分10
4秒前
顾矜应助能干储采纳,获得10
4秒前
5秒前
myelin发布了新的文献求助10
5秒前
风格化橙发布了新的文献求助10
5秒前
彭于晏应助举人烧烤采纳,获得10
6秒前
科目三应助wxn采纳,获得10
6秒前
QC完成签到,获得积分10
7秒前
9秒前
赘婿应助暴躁的振家采纳,获得10
9秒前
10秒前
10秒前
12秒前
qh0305完成签到,获得积分10
12秒前
12秒前
烟花应助dichloro采纳,获得10
13秒前
YE发布了新的文献求助10
13秒前
蓝绝发布了新的文献求助20
13秒前
Mouser完成签到 ,获得积分10
14秒前
鸢尾发布了新的文献求助10
14秒前
二枫忆桑完成签到,获得积分10
14秒前
15秒前
佳佳完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
max发布了新的文献求助10
16秒前
fjnm完成签到,获得积分10
17秒前
Steve完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707