清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Kumar,Sangeeta Singh,Mustafa K. A. Mohammed,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:17
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Juvianne发布了新的文献求助30
17秒前
花花完成签到 ,获得积分10
18秒前
王饱饱完成签到 ,获得积分10
19秒前
夜话风陵杜完成签到 ,获得积分0
19秒前
27秒前
海阔天空完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
Rebeccaiscute完成签到 ,获得积分10
35秒前
Xzx1995完成签到 ,获得积分10
41秒前
外向的妍完成签到,获得积分10
43秒前
YifanWang应助科研通管家采纳,获得30
46秒前
YifanWang应助科研通管家采纳,获得30
46秒前
punyunyung发布了新的文献求助10
55秒前
56秒前
jiyuan完成签到,获得积分10
59秒前
Joy发布了新的文献求助10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
数乱了梨花完成签到 ,获得积分0
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
文艺水风完成签到 ,获得积分10
1分钟前
1分钟前
andre20完成签到 ,获得积分10
1分钟前
萝卜Eating发布了新的文献求助30
1分钟前
神经蛙完成签到 ,获得积分10
1分钟前
punyunyung完成签到,获得积分10
1分钟前
spc68应助黎明先生采纳,获得10
1分钟前
AM发布了新的文献求助10
1分钟前
1分钟前
淡如菊发布了新的文献求助10
1分钟前
Akim应助AM采纳,获得10
1分钟前
丢星完成签到 ,获得积分10
2分钟前
helen李完成签到 ,获得积分10
2分钟前
朴素海亦完成签到 ,获得积分10
2分钟前
淡如菊完成签到,获得积分10
2分钟前
似乎一场梦完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310