Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Shah,Sangeeta Singh,Mohammed Al‐Bahrani,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:15
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李付敏完成签到 ,获得积分10
3秒前
火山暴涨球技完成签到,获得积分10
4秒前
科研小能手完成签到,获得积分10
4秒前
DMA50完成签到 ,获得积分10
4秒前
Qintt完成签到 ,获得积分10
4秒前
lun完成签到,获得积分10
6秒前
古鲁蒂完成签到,获得积分10
6秒前
Rubby完成签到,获得积分10
6秒前
宁annie完成签到,获得积分10
8秒前
Zurlliant完成签到,获得积分10
9秒前
ybwei2008_163完成签到,获得积分20
10秒前
传奇3应助朵颜三卫采纳,获得10
11秒前
莫等闲完成签到,获得积分10
13秒前
科目三应助爱撒娇的紫菜采纳,获得10
13秒前
彭于彦祖应助djbj2022采纳,获得20
14秒前
123完成签到,获得积分10
15秒前
xyz完成签到 ,获得积分10
16秒前
郭星星完成签到,获得积分10
18秒前
19秒前
二丙完成签到 ,获得积分10
19秒前
缥缈八宝粥完成签到,获得积分10
20秒前
天天快乐应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
23秒前
23秒前
大个应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
朵颜三卫发布了新的文献求助10
24秒前
zzuzll完成签到,获得积分10
25秒前
Ray完成签到,获得积分10
26秒前
chenxin完成签到,获得积分10
28秒前
10711发布了新的文献求助10
28秒前
lucygaga完成签到 ,获得积分10
28秒前
yar应助JingP采纳,获得10
29秒前
Ava应助花草般的清香采纳,获得20
30秒前
yehaidadao发布了新的文献求助30
30秒前
现代宝宝完成签到,获得积分10
31秒前
吨吨完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671