Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Shah,Sangeeta Singh,Mohammed Al‐Bahrani,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:15
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助普鲁卡因采纳,获得10
3秒前
咖啡豆发布了新的文献求助10
4秒前
意志所向完成签到,获得积分10
4秒前
《子非鱼》完成签到,获得积分10
5秒前
缓慢的甜瓜完成签到,获得积分10
7秒前
Llllll完成签到,获得积分10
7秒前
orixero应助梦华老师采纳,获得10
8秒前
大橙子发布了新的文献求助10
9秒前
gaoyang123完成签到 ,获得积分10
9秒前
qwe1108完成签到 ,获得积分10
9秒前
10秒前
jane完成签到 ,获得积分10
13秒前
15秒前
瑾玉完成签到,获得积分10
15秒前
17秒前
Akim应助duckspy采纳,获得10
17秒前
那种完成签到,获得积分10
17秒前
liuyanq完成签到,获得积分20
17秒前
18秒前
普鲁卡因发布了新的文献求助10
19秒前
加油杨完成签到 ,获得积分10
20秒前
liuyanq发布了新的文献求助10
23秒前
随风完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
米九完成签到,获得积分10
30秒前
zhao完成签到,获得积分10
33秒前
普鲁卡因发布了新的文献求助10
33秒前
zj完成签到,获得积分10
39秒前
蓝橙完成签到,获得积分10
40秒前
44秒前
GD88完成签到,获得积分10
45秒前
糟糕的梨愁完成签到,获得积分10
46秒前
莫西莫西完成签到 ,获得积分10
47秒前
小趴蔡完成签到 ,获得积分10
49秒前
唐唐发布了新的文献求助10
49秒前
飘逸剑身完成签到,获得积分10
52秒前
airtermis完成签到 ,获得积分10
52秒前
gfasdjsjdsjd完成签到,获得积分10
53秒前
53秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022