已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Kumar,Sangeeta Singh,Mustafa K. A. Mohammed,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:17
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
kshuizhuyu完成签到,获得积分10
1秒前
LMX完成签到 ,获得积分10
1秒前
失眠的新之完成签到,获得积分10
1秒前
hepotosis完成签到 ,获得积分10
2秒前
共享精神应助笑点低人英采纳,获得10
2秒前
赘婿应助雪花采纳,获得10
7秒前
12秒前
bobo完成签到,获得积分10
13秒前
16秒前
16秒前
碧蓝的以云完成签到,获得积分10
17秒前
哈基咪完成签到 ,获得积分10
18秒前
18秒前
22秒前
22秒前
桃井尤川完成签到,获得积分10
22秒前
笑点低完成签到 ,获得积分10
22秒前
27秒前
cc完成签到 ,获得积分10
27秒前
ceeray23应助科研通管家采纳,获得10
28秒前
ceeray23应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
ceeray23应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得30
28秒前
ceeray23应助科研通管家采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
yyds应助科研通管家采纳,获得80
29秒前
29秒前
OvO_4577发布了新的文献求助10
30秒前
和谐的熊猫完成签到,获得积分10
30秒前
会飞的螃蟹完成签到,获得积分10
30秒前
31秒前
ghfgjjf完成签到 ,获得积分10
33秒前
小昊完成签到 ,获得积分10
34秒前
li完成签到,获得积分10
35秒前
39秒前
暮然完成签到,获得积分10
41秒前
42秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502531
求助须知:如何正确求助?哪些是违规求助? 4598345
关于积分的说明 14463856
捐赠科研通 4531936
什么是DOI,文献DOI怎么找? 2483722
邀请新用户注册赠送积分活动 1466943
关于科研通互助平台的介绍 1439576