Accelerated innovation in developing high-performance metal halide perovskite solar cell using machine learning

带隙 钙钛矿(结构) 卤化物 计算机科学 材料科学 钙钛矿太阳能电池 能量转换效率 光电子学 人工智能 算法 工程物理 机器学习 物理 化学 化学工程 工程类 无机化学
作者
Anjan Shah,Sangeeta Singh,Mohammed Al‐Bahrani,Dilip Kumar Sharma
出处
期刊:International Journal of Modern Physics B [World Scientific]
卷期号:37 (07) 被引量:15
标识
DOI:10.1142/s0217979223500674
摘要

The invention of novel light-harvesting materials is one of the primary reasons behind the acceleration of current scientific advancement and technological innovation in the solar sector. Organometal halide perovskite (OHP) has recently attracted a great deal of interest because of the high-energy conversion efficiency that has reached within a few years of its discovery and development. Modern machine learning (ML) technology is quickly advancing in a variety of fields, providing blueprints for the discovery and rational design of new and improved material properties. In this paper, we apply ML to optimize the material composition of OHPs, propose design methods and forecast their performance. Our ML model is built using 285 datasets that were taken from about 700 experimental articles. We have developed two different ML models to predict the bandgap and performance parameters of solar cell. In the first model, we employed three ML algorithms to investigate the relationship between bandgap and perovskite material composition. We estimated the performance characteristics using projected and actual bandgap. Second, ML models are used to predict the performance parameters employing the bandgap of perovskite and energy difference between electron transport layer (ETL) and hole transport layer (HTL) with perovskite as an input parameter. Simulation results suggest that the artificial neural network (ANN) technique, which predicts the bandgap by taking into consideration how cations and halide ions interact with one another, demonstrates a better degree of accuracy (with a Pearson coefficient of 0.91 and root mean square error of 0.059). The constructed ML model closely fits the theoretical prediction made by Shockley and Queisser, and that is almost hard for a person to discover from an aggregation of datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物化新丁完成签到,获得积分10
1秒前
TH完成签到,获得积分20
3秒前
部落格123完成签到,获得积分10
3秒前
liuz53发布了新的文献求助10
3秒前
3秒前
4秒前
传奇3应助佳佳采纳,获得10
4秒前
4秒前
拾忆完成签到,获得积分10
5秒前
5秒前
wangyang完成签到 ,获得积分10
6秒前
颜陌完成签到,获得积分10
6秒前
dll发布了新的文献求助50
7秒前
部落格123发布了新的文献求助10
9秒前
11秒前
Ava应助活力数据线采纳,获得10
12秒前
12秒前
15秒前
18秒前
19秒前
酷波er应助鸣隐采纳,获得10
19秒前
大个应助gxf采纳,获得10
20秒前
20秒前
我是老大应助lll采纳,获得10
22秒前
Seeker发布了新的文献求助10
23秒前
huan发布了新的文献求助10
23秒前
24秒前
zwy1216发布了新的文献求助10
24秒前
二小发布了新的文献求助10
25秒前
韵胜完成签到,获得积分10
26秒前
脆香可丽饼应助小明采纳,获得10
27秒前
28秒前
32秒前
book发布了新的文献求助10
33秒前
安静的明辉完成签到,获得积分10
34秒前
34秒前
情怀应助zhw采纳,获得10
35秒前
紫色蒙面侠应助sad采纳,获得10
36秒前
36秒前
小熊发布了新的文献求助30
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464