亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery

多光谱图像 遥感 基本事实 环境科学 合成孔径雷达 随机森林 卫星 卫星图像 地理 计算机科学 机器学习 工程类 航空航天工程
作者
Ruusa Magano David,Nick Rosser,Daniel N.M. Donoghue
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113232-113232 被引量:52
标识
DOI:10.1016/j.rse.2022.113232
摘要

Having the ability to make accurate assessments of above ground biomass (AGB) at high spatial resolution is invaluable for the management of dryland forest resources in areas at risk from deforestation, forest degradation pressure and climate change impacts. This study reports on the use of satellite-based synthetic-aperture radar (SAR) and multispectral imagery for estimating AGB by correlating satellite observations with ground truth data collected on forest plots from dryland forests in the Chobe National Park, Botswana. We undertook nineteen quantitative experiments with Sentinel-1 (S1), and Sentinel-2 (S2) and tested simple and multivariate regression including parametric (linear) and non-parametric (random forests) algorithms, to explore the optimal approaches for AGB estimation. The largest AGB value of 145 Mg/ha was found in northern Chobe while a large part of the study area (85%) is characterized by low AGB values (< 80 Mg/ha), with an average estimated at 51 Mg/ha. The results show that the AGB estimated using SAR backscatter values from vertical transmit receive (VV) polarization is more accurate than that based on horizontal receive (VH) polarization, accounting for 58% of the variance compared to 32%. Nevertheless, the combination of S1 SAR and S2 multispectral image data produced the best fit to the ground observations for dryland forests explaining 83% of the variance with an accuracy of 89%. Furthermore, the optimal AGB model performance was achieved with a random forest (RF) regression trees algorithm using S1 (SAR) and S2 (multispectral) image data (R2 = 0.95; RMSE = 0.25 Mg/ha). From the 11 vegetation indices tested, GNDVI, Normalized Difference Red Edge (NDRE1), and NDVI obtained the highest linear relationship with AGB (R2 = 0.71 and R2 = 0.56, p < 0.001), however, GNDVI and NDRE1 improved the AGB estimation at medium to high-density forests compared to NDVI. The GRVI and EVI were the least correlated with AGB (R2 = 0.09 and R2 = 0.31) at a significance level of p < 0.001, respectively. We show that NDVI saturates in areas with >80 Mg/ha AGB, whereas the inclusion of SAR backscatter and optical red edge bands (B5) significantly reduces saturation effects in areas of high biomass. GNDVI and red edge (B5) derived vegetation indices have more potential for estimating AGB in dryland forests than NDVI. Our results demonstrate that dryland AGB can be estimated with a reasonable level of precision from open access Earth observation data using multivariate random forest regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨点完成签到 ,获得积分10
6秒前
6秒前
跳羚完成签到,获得积分10
10秒前
16秒前
杳鸢完成签到,获得积分0
17秒前
18秒前
Cynthia完成签到,获得积分10
22秒前
NZH发布了新的文献求助10
24秒前
24秒前
陪你长大发布了新的文献求助10
27秒前
29秒前
30秒前
36秒前
45秒前
49秒前
李大刚完成签到 ,获得积分10
49秒前
54秒前
NZH完成签到,获得积分10
1分钟前
天天快乐应助一一采纳,获得10
1分钟前
fxtx1234发布了新的文献求助50
1分钟前
葵秋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
英俊的铭应助葵秋采纳,获得30
1分钟前
fxtx1234完成签到,获得积分10
1分钟前
1L完成签到,获得积分10
1分钟前
cookerlin完成签到,获得积分20
1分钟前
1分钟前
haifei完成签到,获得积分10
1分钟前
cookerlin发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
orchidaceae发布了新的文献求助10
1分钟前
qwq完成签到,获得积分20
1分钟前
Backto1998完成签到,获得积分10
1分钟前
一一发布了新的文献求助10
1分钟前
qwq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455594
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022815
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387