反推
沉降时间
控制理论(社会学)
非线性系统
计算机科学
控制器(灌溉)
计算
有界函数
缩放比例
转化(遗传学)
班级(哲学)
自适应控制
控制(管理)
数学优化
数学
控制工程
算法
人工智能
阶跃响应
工程类
物理
量子力学
数学分析
农学
生物化学
化学
几何学
生物
基因
作者
Zhiliang Liu,Chong Lin,Yun Shang
标识
DOI:10.1016/j.neucom.2022.09.072
摘要
This paper studies prescribed-time stabilization for a class of unknown strict-feedback nonlinear systems. Adaptive time-varying feedback control method and non-scaling transformation strategies are employed to reduce the computation burden caused by the scaling functions. Besides, the proposed method uses a constrained function to avoid the possibility of an oversized signal when time approaches to the prescribed settling time. Based on the backstepping method, a neural prescribed-time controller is constructed to achieve finite-time regulation. Under the action of the proposed strategy, all the closed-loop signals are bounded and the system is stable in prescribed finite time. Finally, two simulation examples illustrate the effectiveness of the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI