scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data

可解释性 注释 计算机科学 稳健性(进化) 人工智能 过度拟合 数据类型 编码器 机器学习 深度学习 计算生物学 人工神经网络 基因 生物 遗传学 操作系统 程序设计语言
作者
Fan Yang,Wenchuan Wang,Fang Wang,Yuan Fang,Duyu Tang,Junzhou Huang,Hui Lü,Jianhua Yao
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (10): 852-866 被引量:473
标识
DOI:10.1038/s42256-022-00534-z
摘要

Annotating cell types on the basis of single-cell RNA-seq data is a prerequisite for research on disease progress and tumour microenvironments. Here we show that existing annotation methods typically suffer from a lack of curated marker gene lists, improper handling of batch effects and difficulty in leveraging the latent gene–gene interaction information, impairing their generalization and robustness. We developed a pretrained deep neural network-based model, single-cell bidirectional encoder representations from transformers (scBERT), to overcome the challenges. Following BERT’s approach to pretraining and fine-tuning, scBERT attains a general understanding of gene–gene interactions by being pretrained on huge amounts of unlabelled scRNA-seq data; it is then transferred to the cell type annotation task of unseen and user-specific scRNA-seq data for supervised fine-tuning. Extensive and rigorous benchmark studies validated the superior performance of scBERT on cell type annotation, novel cell type discovery, robustness to batch effects and model interpretability. Cell type annotation is a core task for single cell RNA-sequencing, but current bioinformatic tools struggle with some of the underlying challenges, including high dimensionality, data sparsity, batch effects and a lack of labels. In a self-supervised approach, a transformer model called scBERT is pretrained on millions of unlabelled public single cell RNA-seq data and then fine-tuned with a small number of labelled samples for cell annotation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠雨寒灯发布了新的文献求助10
5秒前
合适的平安完成签到,获得积分10
6秒前
6秒前
8秒前
kk发布了新的文献求助10
9秒前
落落完成签到,获得积分20
10秒前
马子妍发布了新的文献求助10
12秒前
12秒前
噗噗完成签到,获得积分10
14秒前
kk完成签到,获得积分20
15秒前
Ryan完成签到,获得积分10
18秒前
许垲锋发布了新的文献求助10
19秒前
吴YB完成签到,获得积分10
19秒前
WJ完成签到,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
spc68应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
22秒前
22秒前
李健应助angelinazh采纳,获得10
22秒前
科研通AI6应助牙ya采纳,获得10
22秒前
25秒前
英姑应助西尔多采纳,获得10
25秒前
Somnolence咩完成签到,获得积分10
27秒前
27秒前
123完成签到,获得积分10
28秒前
jason发布了新的文献求助30
28秒前
29秒前
30秒前
善学以致用应助123采纳,获得10
32秒前
啦啦啦完成签到 ,获得积分10
34秒前
代传芬发布了新的文献求助10
34秒前
34秒前
zhoushishan发布了新的文献求助10
36秒前
36秒前
SciGPT应助roro熊采纳,获得10
38秒前
卤肉饭与石榴汁完成签到,获得积分10
39秒前
科目三应助revour采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565514
求助须知:如何正确求助?哪些是违规求助? 4650580
关于积分的说明 14691851
捐赠科研通 4592480
什么是DOI,文献DOI怎么找? 2519651
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244