亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data

可解释性 注释 计算机科学 稳健性(进化) 人工智能 过度拟合 数据类型 编码器 机器学习 深度学习 计算生物学 人工神经网络 基因 生物 遗传学 操作系统 程序设计语言
作者
Fan Yang,Wenchuan Wang,Fang Wang,Yuan Fang,Duyu Tang,Junzhou Huang,Hui Lü,Jianhua Yao
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (10): 852-866 被引量:465
标识
DOI:10.1038/s42256-022-00534-z
摘要

Annotating cell types on the basis of single-cell RNA-seq data is a prerequisite for research on disease progress and tumour microenvironments. Here we show that existing annotation methods typically suffer from a lack of curated marker gene lists, improper handling of batch effects and difficulty in leveraging the latent gene–gene interaction information, impairing their generalization and robustness. We developed a pretrained deep neural network-based model, single-cell bidirectional encoder representations from transformers (scBERT), to overcome the challenges. Following BERT’s approach to pretraining and fine-tuning, scBERT attains a general understanding of gene–gene interactions by being pretrained on huge amounts of unlabelled scRNA-seq data; it is then transferred to the cell type annotation task of unseen and user-specific scRNA-seq data for supervised fine-tuning. Extensive and rigorous benchmark studies validated the superior performance of scBERT on cell type annotation, novel cell type discovery, robustness to batch effects and model interpretability. Cell type annotation is a core task for single cell RNA-sequencing, but current bioinformatic tools struggle with some of the underlying challenges, including high dimensionality, data sparsity, batch effects and a lack of labels. In a self-supervised approach, a transformer model called scBERT is pretrained on millions of unlabelled public single cell RNA-seq data and then fine-tuned with a small number of labelled samples for cell annotation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
同仁堂在逃人参完成签到 ,获得积分10
刚刚
1秒前
2秒前
taku完成签到 ,获得积分10
2秒前
2秒前
朱志伟完成签到,获得积分10
5秒前
威武板栗完成签到,获得积分20
6秒前
欣喜的诗筠完成签到 ,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
嘻嘻哈哈应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
嘻嘻哈哈应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得20
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
komorebi发布了新的文献求助10
8秒前
陈词丶完成签到,获得积分10
11秒前
13秒前
思源应助hush采纳,获得10
16秒前
落后钢铁侠完成签到 ,获得积分10
18秒前
white完成签到 ,获得积分10
20秒前
梦玲完成签到 ,获得积分10
22秒前
23秒前
天真冷安完成签到,获得积分10
25秒前
25秒前
今后应助komorebi采纳,获得10
27秒前
月亮啊完成签到 ,获得积分10
28秒前
自信的汉堡完成签到,获得积分10
31秒前
Aurora发布了新的文献求助10
31秒前
碗_发布了新的文献求助10
31秒前
32秒前
33秒前
remohu完成签到,获得积分10
33秒前
Tendency完成签到 ,获得积分10
34秒前
39秒前
lin123完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301672
求助须知:如何正确求助?哪些是违规求助? 4449154
关于积分的说明 13847930
捐赠科研通 4335215
什么是DOI,文献DOI怎么找? 2380208
邀请新用户注册赠送积分活动 1375181
关于科研通互助平台的介绍 1341185