Classifying Malicious Domains using DNS Traffic Analysis

网络钓鱼 恶意软件 僵尸网络 计算机科学 域名系统 计算机安全 领域(数学分析) 审查 互联网 黑名单 域名
作者
Samaneh Mahdavifar,Nasim Maleki,Arash Habibi Lashkari,Matt Broda,Amir H. Razavi
标识
DOI:10.1109/dasc-picom-cbdcom-cyberscitech52372.2021.00024
摘要

Malicious domains are one of the major threats that have jeopardized the viability of the Internet over the years. Threat actors usually abuse the Domain Name System (DNS) to lure users to be victims of malicious domains hosting drive-by-download malware, botnets, phishing websites, or spam messages. Each year, many large corporations are impacted by these threats, resulting in huge financial losses in a single attack. Thus, detecting and classifying a malicious domain in a timely manner is essential. Previously, filtering the domains against blacklists was the only way to detect malicious domains, however, this approach was unable to detect newly generated domains. Recently, Machine Learning (ML) techniques have helped to enhance the detection capability of domain vetting systems. A solid feature engineering mechanism plays a pivotal role in boosting the performance of any ML model. Therefore, we have extracted effective and practical features from DNS traffic categorizing them into three groups of lexical-based, DNS statistical-based, and third party-based features. Third party features are biographical information about a specific domain extracted from third party APIs. The benign to malicious domain ratio is also critical to simulate the real-world scheme where approximately 99% of the traffic is devoted to benign. In this paper, we generate and release a large DNS features dataset of 400,000 benign and 13,011 malicious samples processed from a million benign and 51,453 known-malicious domains from publicly available datasets. The malicious samples span between three categories of spam, phishing, and malware. Our dataset, namely CIC-Bell-DNS2021 replicates the real-world scenarios with frequent benign traffic and diverse malicious domain types. We train and validate a classification model that, unlike previous works that focus on binary detection, detects the type of the attack, i.e., spam, phishing, and malware. Classification performance of various ML algorithms on our generated dataset proves the effectiveness of our model, where we achieved the best results for $k$ -Nearest Neighbors $k$ -NN) with 94.8% and 99.4% F1-Score for balanced data ratio (60/40%) and imbalanced data ratio (97/3%), respectively. Finally, we have gone through feature evaluation using information gain analysis to get the merits of each feature in each category, proving the third party features as the most influential one among the top 13 features. keywords- Malicious Domain, DNS, Feature Engineering, Lexical, Statistical, Third Party, Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
星陨发布了新的文献求助10
2秒前
2秒前
momomo发布了新的文献求助10
3秒前
sober完成签到,获得积分10
3秒前
打打应助五月天采纳,获得10
5秒前
7秒前
打打应助安静复天采纳,获得10
9秒前
斯文败类应助醉熏的伊采纳,获得10
10秒前
11秒前
无心的天思完成签到,获得积分10
11秒前
情怀应助大林采纳,获得10
11秒前
12秒前
清脆的夜白完成签到,获得积分10
13秒前
13秒前
14秒前
11111完成签到 ,获得积分10
14秒前
14秒前
15秒前
一一应助那种采纳,获得20
16秒前
JamesPei应助薛定谔的猫采纳,获得10
17秒前
18秒前
19秒前
仙女完成签到 ,获得积分10
19秒前
20秒前
大林发布了新的文献求助10
22秒前
24秒前
锦江完成签到,获得积分10
24秒前
安静复天发布了新的文献求助10
26秒前
大林完成签到,获得积分20
26秒前
Shawn完成签到,获得积分10
28秒前
胡图图发布了新的文献求助10
29秒前
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841977
求助须知:如何正确求助?哪些是违规求助? 3384015
关于积分的说明 10532214
捐赠科研通 3104343
什么是DOI,文献DOI怎么找? 1709563
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878