Classifying Malicious Domains using DNS Traffic Analysis

网络钓鱼 恶意软件 僵尸网络 计算机科学 域名系统 计算机安全 领域(数学分析) 审查 互联网 黑名单 域名 万维网 数学 数学分析
作者
Samaneh Mahdavifar,Nasim Maleki,Arash Habibi Lashkari,Matt Broda,Amir H. Razavi
标识
DOI:10.1109/dasc-picom-cbdcom-cyberscitech52372.2021.00024
摘要

Malicious domains are one of the major threats that have jeopardized the viability of the Internet over the years. Threat actors usually abuse the Domain Name System (DNS) to lure users to be victims of malicious domains hosting drive-by-download malware, botnets, phishing websites, or spam messages. Each year, many large corporations are impacted by these threats, resulting in huge financial losses in a single attack. Thus, detecting and classifying a malicious domain in a timely manner is essential. Previously, filtering the domains against blacklists was the only way to detect malicious domains, however, this approach was unable to detect newly generated domains. Recently, Machine Learning (ML) techniques have helped to enhance the detection capability of domain vetting systems. A solid feature engineering mechanism plays a pivotal role in boosting the performance of any ML model. Therefore, we have extracted effective and practical features from DNS traffic categorizing them into three groups of lexical-based, DNS statistical-based, and third party-based features. Third party features are biographical information about a specific domain extracted from third party APIs. The benign to malicious domain ratio is also critical to simulate the real-world scheme where approximately 99% of the traffic is devoted to benign. In this paper, we generate and release a large DNS features dataset of 400,000 benign and 13,011 malicious samples processed from a million benign and 51,453 known-malicious domains from publicly available datasets. The malicious samples span between three categories of spam, phishing, and malware. Our dataset, namely CIC-Bell-DNS2021 replicates the real-world scenarios with frequent benign traffic and diverse malicious domain types. We train and validate a classification model that, unlike previous works that focus on binary detection, detects the type of the attack, i.e., spam, phishing, and malware. Classification performance of various ML algorithms on our generated dataset proves the effectiveness of our model, where we achieved the best results for $k$ -Nearest Neighbors $k$ -NN) with 94.8% and 99.4% F1-Score for balanced data ratio (60/40%) and imbalanced data ratio (97/3%), respectively. Finally, we have gone through feature evaluation using information gain analysis to get the merits of each feature in each category, proving the third party features as the most influential one among the top 13 features. keywords- Malicious Domain, DNS, Feature Engineering, Lexical, Statistical, Third Party, Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无辜靖巧完成签到 ,获得积分10
3秒前
充电宝应助6666采纳,获得10
3秒前
3秒前
光亮的依凝完成签到,获得积分10
3秒前
BallQ完成签到,获得积分10
3秒前
zzj完成签到,获得积分10
3秒前
FashionBoy应助Roachw采纳,获得10
4秒前
姜恒发布了新的文献求助10
4秒前
benzene完成签到 ,获得积分10
4秒前
yanzilin发布了新的文献求助10
4秒前
苏素肃发布了新的文献求助10
5秒前
qifei完成签到 ,获得积分10
5秒前
舍瓦完成签到,获得积分10
6秒前
why完成签到,获得积分10
6秒前
木林森发布了新的文献求助10
6秒前
烂漫凡柔发布了新的文献求助10
6秒前
传奇3应助22采纳,获得10
7秒前
胡晓平完成签到,获得积分10
8秒前
Summer完成签到,获得积分10
8秒前
鲤鱼雨泽完成签到,获得积分10
8秒前
wzhnb完成签到,获得积分10
9秒前
nojego完成签到,获得积分10
9秒前
倩倩完成签到,获得积分10
9秒前
hhh完成签到 ,获得积分10
9秒前
苏苏完成签到 ,获得积分10
9秒前
ShanYexia完成签到,获得积分10
10秒前
星辰大海应助轻松豌豆采纳,获得10
10秒前
xyj完成签到,获得积分10
10秒前
上官若男应助jinzhituoyan采纳,获得10
11秒前
李健的小迷弟应助wzhnb采纳,获得10
13秒前
14秒前
WZL完成签到,获得积分10
14秒前
xiekunwhy完成签到,获得积分10
14秒前
大魔王完成签到 ,获得积分10
15秒前
啤酒半斤完成签到,获得积分10
15秒前
16秒前
淡然冬灵发布了新的文献求助10
16秒前
Ming完成签到,获得积分10
18秒前
durance完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144