已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classifying Malicious Domains using DNS Traffic Analysis

网络钓鱼 恶意软件 僵尸网络 计算机科学 域名系统 计算机安全 领域(数学分析) 审查 互联网 黑名单 域名
作者
Samaneh Mahdavifar,Nasim Maleki,Arash Habibi Lashkari,Matt Broda,Amir H. Razavi
标识
DOI:10.1109/dasc-picom-cbdcom-cyberscitech52372.2021.00024
摘要

Malicious domains are one of the major threats that have jeopardized the viability of the Internet over the years. Threat actors usually abuse the Domain Name System (DNS) to lure users to be victims of malicious domains hosting drive-by-download malware, botnets, phishing websites, or spam messages. Each year, many large corporations are impacted by these threats, resulting in huge financial losses in a single attack. Thus, detecting and classifying a malicious domain in a timely manner is essential. Previously, filtering the domains against blacklists was the only way to detect malicious domains, however, this approach was unable to detect newly generated domains. Recently, Machine Learning (ML) techniques have helped to enhance the detection capability of domain vetting systems. A solid feature engineering mechanism plays a pivotal role in boosting the performance of any ML model. Therefore, we have extracted effective and practical features from DNS traffic categorizing them into three groups of lexical-based, DNS statistical-based, and third party-based features. Third party features are biographical information about a specific domain extracted from third party APIs. The benign to malicious domain ratio is also critical to simulate the real-world scheme where approximately 99% of the traffic is devoted to benign. In this paper, we generate and release a large DNS features dataset of 400,000 benign and 13,011 malicious samples processed from a million benign and 51,453 known-malicious domains from publicly available datasets. The malicious samples span between three categories of spam, phishing, and malware. Our dataset, namely CIC-Bell-DNS2021 replicates the real-world scenarios with frequent benign traffic and diverse malicious domain types. We train and validate a classification model that, unlike previous works that focus on binary detection, detects the type of the attack, i.e., spam, phishing, and malware. Classification performance of various ML algorithms on our generated dataset proves the effectiveness of our model, where we achieved the best results for $k$ -Nearest Neighbors $k$ -NN) with 94.8% and 99.4% F1-Score for balanced data ratio (60/40%) and imbalanced data ratio (97/3%), respectively. Finally, we have gone through feature evaluation using information gain analysis to get the merits of each feature in each category, proving the third party features as the most influential one among the top 13 features. keywords- Malicious Domain, DNS, Feature Engineering, Lexical, Statistical, Third Party, Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执念完成签到 ,获得积分10
刚刚
金超智完成签到,获得积分10
1秒前
雾气海蓝完成签到 ,获得积分10
2秒前
3秒前
w1x2123完成签到,获得积分10
5秒前
meimei完成签到 ,获得积分10
6秒前
cc123完成签到,获得积分10
6秒前
Fawn发布了新的文献求助10
7秒前
一个可爱的人完成签到 ,获得积分10
8秒前
gezid完成签到 ,获得积分10
9秒前
王婧萱萱萱完成签到 ,获得积分10
9秒前
科研小趴菜完成签到 ,获得积分10
16秒前
SCI完成签到 ,获得积分10
19秒前
goodltl完成签到 ,获得积分10
19秒前
ZhaoCun完成签到 ,获得积分10
20秒前
wxh完成签到 ,获得积分10
22秒前
养花低手完成签到 ,获得积分10
22秒前
上上签完成签到,获得积分10
22秒前
忧伤的心锁完成签到 ,获得积分10
23秒前
23秒前
zzzy完成签到 ,获得积分10
23秒前
24秒前
YYY完成签到 ,获得积分10
24秒前
王子娇完成签到 ,获得积分10
24秒前
又村完成签到 ,获得积分10
25秒前
huihui完成签到,获得积分10
28秒前
严明完成签到,获得积分10
30秒前
严明完成签到,获得积分10
30秒前
清风明月完成签到 ,获得积分10
30秒前
GRG完成签到 ,获得积分0
31秒前
pearson完成签到,获得积分10
31秒前
32秒前
坦率灵槐完成签到 ,获得积分10
32秒前
32秒前
康康完成签到,获得积分10
32秒前
落落完成签到 ,获得积分0
33秒前
上官若男应助Zeonnnnn采纳,获得10
33秒前
张婧媛完成签到,获得积分10
34秒前
研友_Lw43on发布了新的文献求助20
35秒前
义气幼珊完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925547
求助须知:如何正确求助?哪些是违规求助? 4195847
关于积分的说明 13031037
捐赠科研通 3967326
什么是DOI,文献DOI怎么找? 2174599
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101517