亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classifying Malicious Domains using DNS Traffic Analysis

网络钓鱼 恶意软件 僵尸网络 计算机科学 域名系统 计算机安全 领域(数学分析) 审查 互联网 黑名单 域名
作者
Samaneh Mahdavifar,Nasim Maleki,Arash Habibi Lashkari,Matt Broda,Amir H. Razavi
标识
DOI:10.1109/dasc-picom-cbdcom-cyberscitech52372.2021.00024
摘要

Malicious domains are one of the major threats that have jeopardized the viability of the Internet over the years. Threat actors usually abuse the Domain Name System (DNS) to lure users to be victims of malicious domains hosting drive-by-download malware, botnets, phishing websites, or spam messages. Each year, many large corporations are impacted by these threats, resulting in huge financial losses in a single attack. Thus, detecting and classifying a malicious domain in a timely manner is essential. Previously, filtering the domains against blacklists was the only way to detect malicious domains, however, this approach was unable to detect newly generated domains. Recently, Machine Learning (ML) techniques have helped to enhance the detection capability of domain vetting systems. A solid feature engineering mechanism plays a pivotal role in boosting the performance of any ML model. Therefore, we have extracted effective and practical features from DNS traffic categorizing them into three groups of lexical-based, DNS statistical-based, and third party-based features. Third party features are biographical information about a specific domain extracted from third party APIs. The benign to malicious domain ratio is also critical to simulate the real-world scheme where approximately 99% of the traffic is devoted to benign. In this paper, we generate and release a large DNS features dataset of 400,000 benign and 13,011 malicious samples processed from a million benign and 51,453 known-malicious domains from publicly available datasets. The malicious samples span between three categories of spam, phishing, and malware. Our dataset, namely CIC-Bell-DNS2021 replicates the real-world scenarios with frequent benign traffic and diverse malicious domain types. We train and validate a classification model that, unlike previous works that focus on binary detection, detects the type of the attack, i.e., spam, phishing, and malware. Classification performance of various ML algorithms on our generated dataset proves the effectiveness of our model, where we achieved the best results for $k$ -Nearest Neighbors $k$ -NN) with 94.8% and 99.4% F1-Score for balanced data ratio (60/40%) and imbalanced data ratio (97/3%), respectively. Finally, we have gone through feature evaluation using information gain analysis to get the merits of each feature in each category, proving the third party features as the most influential one among the top 13 features. keywords- Malicious Domain, DNS, Feature Engineering, Lexical, Statistical, Third Party, Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaorui发布了新的文献求助30
3秒前
17秒前
18秒前
cool_随风发布了新的文献求助10
23秒前
Jj7完成签到,获得积分10
24秒前
29秒前
cool_随风发布了新的文献求助10
47秒前
sissiarno应助科研通管家采纳,获得30
49秒前
54秒前
平淡如天完成签到,获得积分10
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
beplayer1完成签到,获得积分10
1分钟前
顾建瑜完成签到,获得积分20
1分钟前
拼命三完成签到 ,获得积分10
1分钟前
顾建瑜发布了新的文献求助10
1分钟前
poser发布了新的文献求助150
1分钟前
1分钟前
cool_随风发布了新的文献求助10
1分钟前
晨曦呢完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
鹭江发布了新的文献求助10
2分钟前
科研通AI5应助小时了了采纳,获得10
2分钟前
BowieHuang应助嘻嘻哈哈采纳,获得90
2分钟前
2分钟前
万能图书馆应助cool_随风采纳,获得10
2分钟前
善学以致用应助kkk采纳,获得10
2分钟前
读研霹雳完成签到 ,获得积分10
2分钟前
2分钟前
poser完成签到,获得积分10
2分钟前
田様应助舒服的觅夏采纳,获得10
2分钟前
健忘的溪灵完成签到 ,获得积分10
2分钟前
嘻嘻哈哈发布了新的文献求助90
2分钟前
2分钟前
kkk发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254321
求助须知:如何正确求助?哪些是违规求助? 4417277
关于积分的说明 13751164
捐赠科研通 4289914
什么是DOI,文献DOI怎么找? 2353881
邀请新用户注册赠送积分活动 1350523
关于科研通互助平台的介绍 1310666