Hybrid Contrastive Learning for Unsupervised Person Re-Identification

计算机科学 人工智能 特征(语言学) 判别式 模式识别(心理学) 相似性(几何) 特征学习 无监督学习 样品(材料) 身份(音乐) 约束(计算机辅助设计) 机器学习 鉴定(生物学) 图像(数学) 自然语言处理 数学 语言学 生物 植物 物理 哲学 色谱法 化学 声学 几何学
作者
Tongzhen Si,Fazhi He,Zhong Zhang,Yansong Duan
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 4323-4334 被引量:77
标识
DOI:10.1109/tmm.2022.3174414
摘要

Unsupervised person re-identification (Re-ID) aims to learn discriminative features without human-annotated labels. Recently, contrastive learning has provided a new prospect for unsupervised person Re-ID, and existing methods primarily constrain the feature similarity among easy sample pairs. However, the feature similarity among hard sample pairs is neglected, which yields suboptimal performance in unsupervised person Re-ID. In this paper, we propose a novel Hybrid Contrastive Model (HCM) to perform the identity-level contrastive learning and the image-level contrastive learning for unsupervised person Re-ID, which adequately explores feature similarities among hard sample pairs. Specifically, for the identity-level contrastive learning, an identity-based memory is constructed to store pedestrian features. Accordingly, we define the dynamic contrast loss to identify identity information with dynamic factor for distinguishing hard/easy samples. As for the image-level contrastive learning, an image-based memory is established to store each image feature. We design the sample constraint loss to explore the similarity relationship between hard positive and negative sample pairs. Furthermore, we optimize the two contrastive learning processes in one unified framework to make use of their own advantages as so to constrain the feature distribution for extracting potential information. Extensive experiments demonstrate that the proposed HCM distinctly outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
废柴发布了新的文献求助100
1秒前
1秒前
2秒前
3秒前
3秒前
zoe完成签到,获得积分10
4秒前
4秒前
鱼鳞飞飞发布了新的文献求助10
5秒前
CCY完成签到,获得积分10
6秒前
拜拜完成签到,获得积分10
6秒前
农大彭于晏完成签到,获得积分10
7秒前
ht发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
小龙虾爱睡觉完成签到 ,获得积分10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
IvanMcRae应助科研通管家采纳,获得20
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
l123发布了新的文献求助10
10秒前
10秒前
嘻哈hang发布了新的文献求助30
13秒前
wwy完成签到,获得积分10
14秒前
soong0330完成签到,获得积分10
15秒前
SYLH应助aaaaaa采纳,获得10
19秒前
momo完成签到 ,获得积分10
20秒前
ysy关闭了ysy文献求助
22秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501