Predictive models for the incidence of Parkinson’s disease: systematic review and critical appraisal

预测建模 入射(几何) 医学 批判性评价 系统回顾 梅德林 计算机科学 机器学习 病理 替代医学 数学 几何学 政治学 法学
作者
Yancong Chen,Yinyan Gao,Xuemei Sun,Zhenhua Liu,Zixuan Zhang,Lang Qin,Jinlu Song,Huan Wang,Xinyin Wu
出处
期刊:Reviews in The Neurosciences [De Gruyter]
卷期号:34 (1): 63-74 被引量:3
标识
DOI:10.1515/revneuro-2022-0012
摘要

Numerous predictive models for Parkinson's disease (PD) incidence have been published recently. However, the model performance and methodological quality of those available models are yet needed to be summarized and assessed systematically. In this systematic review, we systematically reviewed the published predictive models for PD incidence and assessed their risk of bias and applicability. Three international databases were searched. Cohort or nested case-control studies that aimed to develop or validate a predictive model for PD incidence were considered eligible. The Prediction model Risk Of Bias ASsessment Tool (PROBAST) was used for risk of bias and applicability assessment. Ten studies covering 10 predictive models were included. Among them, four studies focused on model development, covering eight models, while the remaining six studies focused on model external validation, covering two models. The discrimination of the eight new development models was generally poor, with only one model reported C index > 0.70. Four out of the six external validation studies showed excellent or outstanding discrimination. All included studies had high risk of bias. Three predictive models (the International Parkinson and Movement Disorder Society [MDS] prodromal PD criteria, the model developed by Karabayir et al. and models validated by Faust et al.) are recommended for clinical application by considering model performance and resource-demanding. In conclusion, the performance and methodological quality of most of the identified predictive models for PD incidence were unsatisfactory. The MDS prodromal PD criteria, model developed by Karabayir et al. and model validated by Faust et al. may be considered for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一夜很静应助迷人素采纳,获得10
2秒前
2秒前
耍酷的夏云应助SV采纳,获得10
4秒前
六月完成签到,获得积分10
8秒前
Anquan发布了新的文献求助10
8秒前
善学以致用应助好难啊采纳,获得10
8秒前
悦耳觅荷发布了新的文献求助10
9秒前
9秒前
10秒前
十七完成签到 ,获得积分10
10秒前
10秒前
ccerr完成签到,获得积分10
11秒前
11秒前
乌梅不乌完成签到,获得积分10
11秒前
11秒前
和谐的寄凡完成签到,获得积分10
12秒前
Millennial发布了新的文献求助10
13秒前
诸笑白发布了新的文献求助10
13秒前
车秋寒发布了新的文献求助10
13秒前
14秒前
我是老大应助张学友采纳,获得30
17秒前
xiangxiang发布了新的文献求助10
17秒前
17秒前
想在海边种花完成签到,获得积分10
18秒前
无限的雨梅完成签到 ,获得积分10
18秒前
18秒前
材料打工人完成签到 ,获得积分10
19秒前
甜甜忆山完成签到,获得积分10
20秒前
楼剑愁发布了新的文献求助10
20秒前
好难啊发布了新的文献求助10
21秒前
21秒前
苏苏发布了新的文献求助10
24秒前
25秒前
好难啊完成签到,获得积分20
26秒前
悦耳觅荷完成签到,获得积分20
27秒前
阿尔卑斯完成签到,获得积分10
28秒前
浪迹天涯应助kldxxb采纳,获得10
28秒前
zasideler完成签到,获得积分10
29秒前
故意的傲玉应助Anquan采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851