Predictive models for the incidence of Parkinson’s disease: systematic review and critical appraisal

预测建模 入射(几何) 医学 批判性评价 系统回顾 梅德林 计算机科学 机器学习 病理 替代医学 数学 政治学 法学 几何学
作者
Yancong Chen,Yinyan Gao,Xuemei Sun,Zhenhua Liu,Zixuan Zhang,Lang Qin,Jinlu Song,Huan Wang,Xinyin Wu
出处
期刊:Reviews in The Neurosciences [De Gruyter]
卷期号:34 (1): 63-74 被引量:3
标识
DOI:10.1515/revneuro-2022-0012
摘要

Numerous predictive models for Parkinson's disease (PD) incidence have been published recently. However, the model performance and methodological quality of those available models are yet needed to be summarized and assessed systematically. In this systematic review, we systematically reviewed the published predictive models for PD incidence and assessed their risk of bias and applicability. Three international databases were searched. Cohort or nested case-control studies that aimed to develop or validate a predictive model for PD incidence were considered eligible. The Prediction model Risk Of Bias ASsessment Tool (PROBAST) was used for risk of bias and applicability assessment. Ten studies covering 10 predictive models were included. Among them, four studies focused on model development, covering eight models, while the remaining six studies focused on model external validation, covering two models. The discrimination of the eight new development models was generally poor, with only one model reported C index > 0.70. Four out of the six external validation studies showed excellent or outstanding discrimination. All included studies had high risk of bias. Three predictive models (the International Parkinson and Movement Disorder Society [MDS] prodromal PD criteria, the model developed by Karabayir et al. and models validated by Faust et al.) are recommended for clinical application by considering model performance and resource-demanding. In conclusion, the performance and methodological quality of most of the identified predictive models for PD incidence were unsatisfactory. The MDS prodromal PD criteria, model developed by Karabayir et al. and model validated by Faust et al. may be considered for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黑苹果完成签到,获得积分10
1秒前
yoyo20012623完成签到,获得积分10
2秒前
caiqinghua888888完成签到,获得积分10
2秒前
BaooooooMao完成签到,获得积分10
2秒前
anjun完成签到,获得积分10
3秒前
3秒前
huyan完成签到,获得积分10
4秒前
towerman完成签到,获得积分10
4秒前
guanzhuang完成签到,获得积分10
5秒前
程程完成签到,获得积分10
6秒前
顺心绮兰完成签到,获得积分10
7秒前
7秒前
8秒前
玛利隆完成签到,获得积分10
8秒前
9秒前
刘振岁完成签到,获得积分10
9秒前
小橘子完成签到,获得积分10
10秒前
曾友发布了新的文献求助10
10秒前
优美凌青完成签到,获得积分10
10秒前
橙子完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
hyekyo完成签到,获得积分10
13秒前
健康的绮晴完成签到,获得积分10
14秒前
韩乐乐发布了新的文献求助10
14秒前
斯文败类应助tkdzjr12345采纳,获得10
14秒前
feilei完成签到,获得积分10
16秒前
Singularity应助double采纳,获得20
16秒前
18秒前
18秒前
嘻嘻完成签到,获得积分10
18秒前
19秒前
凯蒂完成签到,获得积分10
19秒前
韩乐乐完成签到,获得积分10
20秒前
木子完成签到 ,获得积分10
20秒前
InfoNinja应助Stageruner采纳,获得30
20秒前
曾友完成签到,获得积分20
20秒前
子铭完成签到,获得积分10
21秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169