坐标系
笛卡尔坐标系
坐标下降
坐标空间
椭圆坐标系
椭球坐标系
偏微分方程
人工神经网络
转化(遗传学)
球坐标系
工作(物理)
计算机科学
应用数学
数学
数学分析
算法
几何学
人工智能
物理
生物化学
热力学
基因
化学
作者
Hyo-Seok Hwang,Sangyoung Son,Yoojoong Kim,Junhee Seok
标识
DOI:10.1109/icufn55119.2022.9829676
摘要
In this work, we investigate some coordinate systems to solve partial differential equations (PDEs) using a neural network. We approximate the solution using physics-informed neural networks (PINNs) both before and after the coordinate transformation for two cases: a coordinate system with periodicity and without periodicity. We demonstrate that PINNs with Cartesian coordinate shows better approximation accuracy. This implies in PINNs training the Cartesian coordinate system is superior to the other coordinate systems derived by coordinate transformation. To the best of our knowledge, this is the first work to test training of PINNs by modifying PDEs according to the boundary shape.
科研通智能强力驱动
Strongly Powered by AbleSci AI