Mitigating the Filter Bubble While Maintaining Relevance

观点 计算机科学 相关性(法律) 多元化(营销策略) 成对比较 情报检索 协同过滤 数据科学 推荐系统 政治学 人工智能 业务 营销 艺术 法学 视觉艺术
作者
Zhaolin Gao,Tianshu Shen,Zheda Mai,Mohamed Reda Bouadjenek,Isaac Waller,Ashton Anderson,Ron Bodkin,Scott Sanner
标识
DOI:10.1145/3477495.3531890
摘要

Online recommendation systems are prone to create filter bubbles, whereby users are only recommended content narrowly aligned with their historical interests. In the case of media recommendation, this can reinforce political polarization by recommending topical content (e.g., on the economy) at one extreme end of the political spectrum even though this topic has broad coverage from multiple political viewpoints that would provide a more balanced and informed perspective for the user. Historically, Maximal Marginal Relevance (MMR) has been used to diversify result lists and even mitigate filter bubbles, but suffers from three key drawbacks: (1)~MMR directly sacrifices relevance for diversity, (2)~MMR typically diversifies across all content and not just targeted dimensions (e.g., political polarization), and (3)~MMR is inefficient in practice due to the need to compute pairwise similarities between recommended items. To simultaneously address these limitations, we propose a novel methodology that trains Concept Activation Vectors (CAVs) for targeted topical dimensions (e.g., political polarization). We then modulate the latent embeddings of user preferences in a state-of-the-art VAE-based recommender system to diversify along the targeted dimension while preserving topical relevance across orthogonal dimensions. Our experiments show that our Targeted Diversification VAE-based Collaborative Filtering (TD-VAE-CF) methodology better preserves relevance of content to user preferences across a range of diversification levels in comparison to both untargeted and targeted variations of Maximum Marginal Relevance (MMR); TD-VAE-CF is also much more computationally efficient than the post-hoc re-ranking approach of MMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
九月发布了新的文献求助10
4秒前
驰驰发布了新的文献求助10
5秒前
6秒前
6秒前
CipherSage应助灰灰采纳,获得10
6秒前
hgc发布了新的文献求助10
10秒前
许乐发布了新的文献求助10
11秒前
11秒前
敢敢发布了新的文献求助10
11秒前
13秒前
顾矜应助清秀的语堂采纳,获得10
14秒前
555完成签到,获得积分10
15秒前
porkpork发布了新的文献求助10
16秒前
Rwslpy完成签到 ,获得积分10
18秒前
husaheng发布了新的文献求助20
18秒前
小蘑菇应助敢敢采纳,获得10
19秒前
香蕉觅云应助乐观的冷松采纳,获得10
19秒前
CipherSage应助神马都不懂采纳,获得10
21秒前
21秒前
千里共婵娟完成签到,获得积分0
21秒前
25秒前
思源应助耍酷含芙采纳,获得10
27秒前
27秒前
28秒前
高有财发布了新的文献求助10
28秒前
研友_VZG7GZ应助开朗丹雪采纳,获得30
28秒前
许乐完成签到 ,获得积分10
29秒前
酷波er应助第十一话采纳,获得10
29秒前
30秒前
30秒前
小鱼仔发布了新的文献求助10
31秒前
31秒前
和谐的面包完成签到,获得积分10
32秒前
富贵鱼鱼完成签到,获得积分10
32秒前
zf2023完成签到,获得积分10
33秒前
56565发布了新的文献求助10
34秒前
水云间发布了新的文献求助10
34秒前
凯蒂完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978