材料科学
共聚物
磁流变液
复合数
复合材料
分散稳定性
流变学
纳米颗粒
纳米技术
热力学
聚合物
阻尼器
物理
作者
Wen Jiao Han,Li Wang,Xiaoting Rui,Yu Zhen Dong,Hyoung-Jin Choi
摘要
Abstract Magnetorheological fluids (MRFs) have been successfully used in a variety of smart control systems, but are still limited due to their relatively poor settling stability. Herein, a core/shell‐structured Fe 3 O 4 /copolymer composite nanoparticle is synthesized as a new candidate material for stimulus‐responsive MRFs to tackle the limitation of the long‐term dispersion stability. Aniline‐co‐diphenylamine copolymers (PANI‐co‐PDPA) are loaded onto the surface of Fe 3 O 4 nanoparticles, providing a lighter density and sufficient active interface for the dispersion of magnetic particles in the carrier medium. The features of the Fe 3 O 4 /copolymer composite nanoparticles, including morphology, compositional, and crystalline properties, are characterized. An MRF is prepared by suspending Fe 3 O 4 /copolymer composite nanoparticles in a nonmagnetic medium oil, and its rheological properties are assessed using a controlled shear rate test and dynamic oscillation tests using a rotational rheometer. Rheological models including the Bingham model and the Herschel–Bulkley model are fitted to the flow curves of the MRF. The obtained Fe 3 O 4 /copolymer composite shows soft‐magnetic properties, as well as greater density adaptability and higher stability, compared to Fe 3 O 4 . Moreover, the sedimentation testing provides information about the dispersion stability characteristics of MRF and shows a good correlation with high‐stability magnetorheological (MR) response. The Fe 3 O 4 /copolymer‐based MRF with a tunable and instantaneous MR response is considered a promising material for smart control applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI