化学
烷基
对接(动物)
酶
立体化学
活动站点
结合位点
生物化学
有机化学
医学
护理部
作者
Atsushi Kato,Namiki Izumi,Kosuke Yoshimura,Uta Kanekiyo,Mana Kishida,Kenta Shinzawa,Tiantian Lu,Yi-Xian Li,Robert J. Nash,George W. J. Fleet,Nobutada Tanaka,Chu‐Yi Yu
摘要
L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 μM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.
科研通智能强力驱动
Strongly Powered by AbleSci AI