亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect

人工智能 深度学习 计算机科学 机器学习 试验数据 培训(气象学) 软件部署 召回 相似性(几何) 模式识别(心理学) 精确性和召回率 考试(生物学) 图像(数学) 物理 哲学 古生物学 气象学 操作系统 程序设计语言 生物 语言学
作者
Ming Cheng,Huatang Yuan,Qifan Wang,Zexiang Cai,Yueqin Liu,Yingjie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107010-107010 被引量:11
标识
DOI:10.1016/j.compag.2022.107010
摘要

The behavior of animals can reflect animal health status and physiological stages. Automatic recognition of animal behavior can provide a powerful tool for improving the breeding management level and ensuring animal welfare. Although the image-based deep learning algorithms can be used to recognize animal behavior automatically, there has been no unified and clear conclusive definition of the characteristics and amount of training data of the deep learning model. To address this issue, this paper proposes a deep learning model based on the YOLO v5 network for sheep behavior recognition. The proposed model is trained using various types of datasets divided into two categories based on whether the training data have high similarity data characteristics with the test data. The model training included several rounds with different training data amounts. The experimental results show that if the training and testing data have the same characteristics, only 1,125 images per behavior type are required to achieve the recognition precision of 0.967 and recall of 0.965. However, when training and test data have different characteristics, it is challenging to achieve such high precision and recall values, even when using many datasets. These results demonstrate that in a structured scenario, when training data and data generated in the practical application have consistent characteristics, there is no need to use a large amount of training data. As a result, deep learning deployment efficiency in practical applications can be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
7NEF发布了新的文献求助10
7秒前
归尘给Edison的求助进行了留言
17秒前
YifanWang完成签到,获得积分0
27秒前
Vvvkkk发布了新的文献求助30
29秒前
李健应助jianwuzhou采纳,获得10
39秒前
46秒前
wcc发布了新的文献求助10
50秒前
chiazy完成签到 ,获得积分10
52秒前
wcc完成签到,获得积分20
57秒前
1分钟前
星火完成签到,获得积分20
1分钟前
星火发布了新的文献求助10
1分钟前
1分钟前
1分钟前
jianwuzhou发布了新的文献求助10
1分钟前
1分钟前
在水一方应助jianwuzhou采纳,获得10
1分钟前
2分钟前
2分钟前
Hasee完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
jianwuzhou发布了新的文献求助10
3分钟前
宝可梦的春天完成签到,获得积分10
3分钟前
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
英姑应助迅速易云采纳,获得10
4分钟前
科研通AI2S应助jianwuzhou采纳,获得50
4分钟前
gaoyue完成签到,获得积分10
4分钟前
5分钟前
5分钟前
Wilson完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896