亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Framework for Predicting Protein Functions With Co-Occurrence of GO Terms

计算机科学 人工智能 深度学习 机器学习 心理学
作者
Min Li,Wenbo Shi,Fuhao Zhang,Min Zeng,Yaohang Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 833-842 被引量:8
标识
DOI:10.1109/tcbb.2022.3170719
摘要

The understanding of protein functions is critical to many biological problems such as the development of new drugs and new crops. To reduce the huge gap between the increase of protein sequences and annotations of protein functions, many methods have been proposed to deal with this problem. These methods use Gene Ontology (GO) to classify the functions of proteins and consider one GO term as a class label. However, they ignore the co-occurrence of GO terms that is helpful for protein function prediction. We propose a new deep learning model, named DeepPFP-CO, which uses Graph Convolutional Network (GCN) to explore and capture the co-occurrence of GO terms to improve the protein function prediction performance. In this way, we can further deduce the protein functions by fusing the predicted propensity of the center function and its co-occurrence functions. We use Fmax and AUPR to evaluate the performance of DeepPFP-CO and compare DeepPFP-CO with state-of-the-art methods such as DeepGOPlus and DeepGOA. The computational results show that DeepPFP-CO outperforms DeepGOPlus and other methods. Moreover, we further analyze our model at the protein level. The results have demonstrated that DeepPFP-CO improves the performance of protein function prediction. DeepPFP-CO is available at https://csuligroup.com/DeepPFP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
冷静新烟发布了新的文献求助10
13秒前
45秒前
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
1分钟前
dovejingling完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
taku完成签到 ,获得积分10
2分钟前
Jasper应助tylerli采纳,获得10
3分钟前
poki完成签到 ,获得积分10
3分钟前
蚂蚁牙黑完成签到 ,获得积分10
3分钟前
科研通AI5应助温暖的夏波采纳,获得10
4分钟前
香蕉觅云应助wawa采纳,获得10
4分钟前
4分钟前
tylerli发布了新的文献求助10
4分钟前
wenbinvan完成签到,获得积分0
4分钟前
Bingtao_Lian完成签到 ,获得积分10
4分钟前
CipherSage应助du采纳,获得10
5分钟前
5分钟前
du发布了新的文献求助10
5分钟前
du完成签到,获得积分10
6分钟前
6分钟前
脑洞疼应助科研通管家采纳,获得50
6分钟前
arsenal完成签到 ,获得积分10
6分钟前
科目三应助Frank采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
Frank发布了新的文献求助10
6分钟前
科研通AI2S应助朱宣诚采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
7分钟前
JamesPei应助朱宣诚采纳,获得10
7分钟前
7分钟前
7分钟前
朱宣诚发布了新的文献求助10
7分钟前
GPTea应助科研通管家采纳,获得10
8分钟前
GPTea应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945273
求助须知:如何正确求助?哪些是违规求助? 4209809
关于积分的说明 13085944
捐赠科研通 3989948
什么是DOI,文献DOI怎么找? 2184397
邀请新用户注册赠送积分活动 1199739
关于科研通互助平台的介绍 1113097