A Deep Learning Framework for Predicting Protein Functions With Co-Occurrence of GO Terms

计算机科学 人工智能 深度学习 机器学习 心理学
作者
Min Li,Wenbo Shi,Fuhao Zhang,Min Zeng,Yaohang Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 833-842 被引量:8
标识
DOI:10.1109/tcbb.2022.3170719
摘要

The understanding of protein functions is critical to many biological problems such as the development of new drugs and new crops. To reduce the huge gap between the increase of protein sequences and annotations of protein functions, many methods have been proposed to deal with this problem. These methods use Gene Ontology (GO) to classify the functions of proteins and consider one GO term as a class label. However, they ignore the co-occurrence of GO terms that is helpful for protein function prediction. We propose a new deep learning model, named DeepPFP-CO, which uses Graph Convolutional Network (GCN) to explore and capture the co-occurrence of GO terms to improve the protein function prediction performance. In this way, we can further deduce the protein functions by fusing the predicted propensity of the center function and its co-occurrence functions. We use Fmax and AUPR to evaluate the performance of DeepPFP-CO and compare DeepPFP-CO with state-of-the-art methods such as DeepGOPlus and DeepGOA. The computational results show that DeepPFP-CO outperforms DeepGOPlus and other methods. Moreover, we further analyze our model at the protein level. The results have demonstrated that DeepPFP-CO improves the performance of protein function prediction. DeepPFP-CO is available at https://csuligroup.com/DeepPFP/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mikey发布了新的文献求助10
刚刚
Tq完成签到,获得积分10
1秒前
Lee完成签到,获得积分10
1秒前
ehui135发布了新的文献求助10
1秒前
zyj完成签到,获得积分10
1秒前
勤奋的尔白完成签到 ,获得积分10
1秒前
姚佳麒完成签到,获得积分10
1秒前
bkagyin应助英勇冰淇淋采纳,获得10
2秒前
2秒前
天天快乐应助英俊的誉采纳,获得10
2秒前
D追完成签到,获得积分10
2秒前
孟meng发布了新的文献求助10
2秒前
2秒前
咿呀咿呀哟应助Inveddy采纳,获得30
2秒前
JamesPei应助xuan采纳,获得10
3秒前
CartGo发布了新的文献求助10
3秒前
徐月亮完成签到,获得积分10
3秒前
3秒前
ziyue发布了新的文献求助10
3秒前
zzzsssyyy1995完成签到,获得积分10
3秒前
韩祖完成签到 ,获得积分10
4秒前
专注的映之完成签到 ,获得积分10
4秒前
河清海晏发布了新的文献求助10
4秒前
劣根完成签到,获得积分10
5秒前
九公子完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
6秒前
6秒前
seven光年发布了新的文献求助10
7秒前
8秒前
东晓发布了新的文献求助10
8秒前
是各种蕉发布了新的文献求助10
8秒前
冯宝宝发布了新的文献求助10
8秒前
niNe3YUE应助菜根牛采纳,获得10
9秒前
核桃应助accept采纳,获得30
9秒前
9秒前
狐狐完成签到,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388