A Deep Learning Framework for Predicting Protein Functions With Co-Occurrence of GO Terms

计算机科学 人工智能 深度学习 机器学习 心理学
作者
Min Li,Wenbo Shi,Fuhao Zhang,Min Zeng,Yaohang Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 833-842 被引量:8
标识
DOI:10.1109/tcbb.2022.3170719
摘要

The understanding of protein functions is critical to many biological problems such as the development of new drugs and new crops. To reduce the huge gap between the increase of protein sequences and annotations of protein functions, many methods have been proposed to deal with this problem. These methods use Gene Ontology (GO) to classify the functions of proteins and consider one GO term as a class label. However, they ignore the co-occurrence of GO terms that is helpful for protein function prediction. We propose a new deep learning model, named DeepPFP-CO, which uses Graph Convolutional Network (GCN) to explore and capture the co-occurrence of GO terms to improve the protein function prediction performance. In this way, we can further deduce the protein functions by fusing the predicted propensity of the center function and its co-occurrence functions. We use Fmax and AUPR to evaluate the performance of DeepPFP-CO and compare DeepPFP-CO with state-of-the-art methods such as DeepGOPlus and DeepGOA. The computational results show that DeepPFP-CO outperforms DeepGOPlus and other methods. Moreover, we further analyze our model at the protein level. The results have demonstrated that DeepPFP-CO improves the performance of protein function prediction. DeepPFP-CO is available at https://csuligroup.com/DeepPFP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Orange应助Aria采纳,获得10
1秒前
一直发布了新的文献求助10
6秒前
情怀应助月yue采纳,获得10
7秒前
WangT发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
2333完成签到,获得积分10
10秒前
胡霖完成签到,获得积分10
12秒前
顾矜应助ljx采纳,获得10
13秒前
N型半导体发布了新的文献求助10
13秒前
Yuki0616完成签到,获得积分10
14秒前
小鸭飞发布了新的文献求助10
14秒前
WangT完成签到,获得积分10
15秒前
领导范儿应助N型半导体采纳,获得10
17秒前
17秒前
17秒前
悟空发布了新的文献求助10
18秒前
嗯哼发布了新的文献求助10
19秒前
20秒前
月yue发布了新的文献求助10
20秒前
研友_Ze0vBn发布了新的文献求助10
23秒前
李健春完成签到 ,获得积分10
25秒前
脑洞疼应助一直采纳,获得10
25秒前
27秒前
27秒前
29秒前
DoLaso完成签到,获得积分10
29秒前
29秒前
mylaodao完成签到,获得积分0
30秒前
鱼雁发布了新的文献求助10
33秒前
ljx发布了新的文献求助10
33秒前
69关闭了69文献求助
33秒前
亮不卡发布了新的文献求助10
34秒前
麻辣鱼头发布了新的文献求助30
34秒前
嗯哼完成签到 ,获得积分10
34秒前
Wanfeng应助寂寞的灵安采纳,获得50
35秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357