A Deep Learning Framework for Predicting Protein Functions With Co-Occurrence of GO Terms

计算机科学 人工智能 深度学习 机器学习 心理学
作者
Min Li,Wenbo Shi,Fuhao Zhang,Min Zeng,Yaohang Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 833-842 被引量:8
标识
DOI:10.1109/tcbb.2022.3170719
摘要

The understanding of protein functions is critical to many biological problems such as the development of new drugs and new crops. To reduce the huge gap between the increase of protein sequences and annotations of protein functions, many methods have been proposed to deal with this problem. These methods use Gene Ontology (GO) to classify the functions of proteins and consider one GO term as a class label. However, they ignore the co-occurrence of GO terms that is helpful for protein function prediction. We propose a new deep learning model, named DeepPFP-CO, which uses Graph Convolutional Network (GCN) to explore and capture the co-occurrence of GO terms to improve the protein function prediction performance. In this way, we can further deduce the protein functions by fusing the predicted propensity of the center function and its co-occurrence functions. We use Fmax and AUPR to evaluate the performance of DeepPFP-CO and compare DeepPFP-CO with state-of-the-art methods such as DeepGOPlus and DeepGOA. The computational results show that DeepPFP-CO outperforms DeepGOPlus and other methods. Moreover, we further analyze our model at the protein level. The results have demonstrated that DeepPFP-CO improves the performance of protein function prediction. DeepPFP-CO is available at https://csuligroup.com/DeepPFP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李木槿发布了新的文献求助10
1秒前
huiwanfeifei完成签到,获得积分10
2秒前
2秒前
2秒前
科研通AI2S应助believer一采纳,获得10
2秒前
英姑应助卡尔采纳,获得10
2秒前
万能图书馆应助YWL采纳,获得10
3秒前
平常诗翠完成签到,获得积分10
4秒前
5秒前
5秒前
Philthee完成签到,获得积分10
6秒前
何羡卿关注了科研通微信公众号
6秒前
enchanted完成签到 ,获得积分10
8秒前
飞儿随缘发布了新的文献求助10
10秒前
SciGPT应助keyangouderic采纳,获得10
10秒前
wang发布了新的文献求助10
10秒前
10秒前
包容芯完成签到 ,获得积分10
11秒前
角落滴发布了新的文献求助10
11秒前
999完成签到,获得积分10
11秒前
12秒前
guozizi发布了新的文献求助10
12秒前
kuie发布了新的文献求助10
12秒前
13秒前
orixero应助走下班了采纳,获得10
13秒前
wwl完成签到,获得积分10
13秒前
13秒前
13秒前
白水完成签到,获得积分10
13秒前
桐桐应助陈老板采纳,获得10
14秒前
14秒前
15秒前
脑洞疼应助ardejiang采纳,获得10
15秒前
tuanheqi应助模糊中正采纳,获得200
16秒前
16秒前
箭一船发布了新的文献求助10
16秒前
聪慧的月饼完成签到,获得积分10
18秒前
虞丹萱发布了新的文献求助20
19秒前
周凡淇发布了新的文献求助10
19秒前
聪慧语风发布了新的文献求助10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477079
求助须知:如何正确求助?哪些是违规求助? 3068557
关于积分的说明 9108573
捐赠科研通 2760002
什么是DOI,文献DOI怎么找? 1514563
邀请新用户注册赠送积分活动 700319
科研通“疑难数据库(出版商)”最低求助积分说明 699453