Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 化学 海洋学 管理 经济 基因 地质学
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清腾发布了新的文献求助10
刚刚
刚刚
Hale完成签到,获得积分0
刚刚
1秒前
贺喆完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
star应助芍药采纳,获得10
1秒前
RE完成签到 ,获得积分10
1秒前
emuscle完成签到,获得积分10
1秒前
Rose完成签到,获得积分10
1秒前
o1g发布了新的文献求助10
2秒前
朴实山兰完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助李志采纳,获得10
3秒前
江子完成签到 ,获得积分10
3秒前
LIANG发布了新的文献求助10
3秒前
577关闭了577文献求助
3秒前
Hello应助贺喆采纳,获得10
3秒前
糊涂的冰菱完成签到,获得积分10
4秒前
Hello应助无情的宛儿采纳,获得100
4秒前
在水一方应助哈1823145采纳,获得10
4秒前
4秒前
yourenpkma123发布了新的文献求助10
4秒前
5秒前
罗coming完成签到,获得积分10
5秒前
无医发布了新的文献求助10
5秒前
Eliauk完成签到,获得积分10
5秒前
5秒前
5秒前
周小周发布了新的文献求助10
6秒前
微笑的丑发布了新的文献求助10
6秒前
徐涛发布了新的文献求助10
6秒前
yyyy发布了新的文献求助10
6秒前
natuer发布了新的文献求助10
6秒前
6秒前
无花果应助可耐的凌旋采纳,获得30
6秒前
WATQ发布了新的文献求助30
6秒前
贰拾发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721