Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 化学 海洋学 管理 经济 基因 地质学
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助蜘蛛侠采纳,获得10
刚刚
12234完成签到,获得积分10
刚刚
刚刚
枫cxf163发布了新的文献求助10
1秒前
英俊的铭应助hudaojiadecaigou采纳,获得10
1秒前
1秒前
馨达子完成签到,获得积分10
1秒前
kaka7完成签到,获得积分10
1秒前
SciGPT应助清秀语梦采纳,获得10
1秒前
ya发布了新的文献求助10
2秒前
2秒前
陶治完成签到,获得积分10
3秒前
3秒前
Orange应助灵巧的白昼采纳,获得10
4秒前
4秒前
嘛吉发布了新的文献求助10
4秒前
PURPLE发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
xiongyi完成签到,获得积分10
5秒前
时光是个无赖完成签到,获得积分10
5秒前
李爱国应助父父采纳,获得10
5秒前
6秒前
彩色的凡阳完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
江上发布了新的文献求助10
7秒前
7秒前
null应助momo采纳,获得20
7秒前
8秒前
panpan发布了新的文献求助10
8秒前
无极微光应助非而者厚采纳,获得20
8秒前
HOAN应助mads采纳,获得50
8秒前
827584450发布了新的文献求助10
8秒前
9秒前
9秒前
蒹葭完成签到 ,获得积分10
9秒前
9秒前
Ava应助fj采纳,获得10
9秒前
禹笑珊完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785