Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 基因 海洋学 地质学 经济 化学 管理
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruirui完成签到,获得积分10
刚刚
刚刚
刚刚
2秒前
bkagyin应助Cris采纳,获得10
3秒前
瀚森完成签到,获得积分10
3秒前
迷路曼青发布了新的文献求助10
4秒前
李昕123发布了新的文献求助10
4秒前
Azusa完成签到,获得积分10
5秒前
充电宝应助无情的柏柳采纳,获得10
5秒前
莴苣发布了新的文献求助10
5秒前
大个应助羞涩的高山采纳,获得10
5秒前
WL完成签到,获得积分10
6秒前
DAOXIAN发布了新的文献求助10
7秒前
atobezy发布了新的文献求助20
8秒前
善学以致用应助yang采纳,获得10
11秒前
栗栗发布了新的文献求助20
11秒前
13秒前
坚定的若枫完成签到,获得积分10
14秒前
T淋巴细胞完成签到,获得积分10
15秒前
Murray完成签到,获得积分10
15秒前
15秒前
hhhhr完成签到,获得积分10
17秒前
太阳雨发布了新的文献求助10
18秒前
DAOXIAN完成签到,获得积分10
18秒前
陈颜完成签到,获得积分10
19秒前
20113011发布了新的文献求助10
19秒前
英俊的铭应助明亮的海冬采纳,获得10
19秒前
19秒前
19秒前
ZZH完成签到,获得积分20
19秒前
毛豆完成签到,获得积分10
19秒前
隐形曼青应助整齐向卉采纳,获得10
19秒前
20秒前
ZZH发布了新的文献求助10
22秒前
动人的雨筠完成签到,获得积分10
22秒前
22秒前
Lobectomy发布了新的文献求助10
24秒前
完美世界应助ww采纳,获得10
25秒前
小小给小小的求助进行了留言
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943