亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 化学 海洋学 管理 经济 基因 地质学
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
5秒前
今后应助瘦瘦的飞秒激光采纳,获得10
6秒前
13秒前
龙大王完成签到 ,获得积分10
14秒前
土豪的洋葱完成签到,获得积分10
18秒前
18秒前
18秒前
G.D完成签到 ,获得积分10
22秒前
24秒前
小夏完成签到,获得积分10
26秒前
27秒前
SciGPT应助科研通管家采纳,获得10
28秒前
大方的怜寒完成签到 ,获得积分10
29秒前
归去来兮发布了新的文献求助10
30秒前
所所应助晴小阳采纳,获得10
37秒前
41秒前
科研通AI2S应助可靠的寒风采纳,获得10
45秒前
52秒前
54秒前
壮观沉鱼完成签到 ,获得积分10
58秒前
文艺怀蝶发布了新的文献求助10
59秒前
orixero应助Zz采纳,获得10
1分钟前
舒心小海豚完成签到 ,获得积分10
1分钟前
abull完成签到,获得积分10
1分钟前
1分钟前
Zz完成签到,获得积分10
1分钟前
1分钟前
Zz发布了新的文献求助10
1分钟前
1分钟前
于驳完成签到,获得积分10
1分钟前
舒心访文完成签到,获得积分10
1分钟前
科研通AI6应助ss采纳,获得10
1分钟前
1分钟前
Innogen完成签到,获得积分10
1分钟前
1分钟前
1分钟前
彭于晏应助Innogen采纳,获得10
1分钟前
1分钟前
1分钟前
泠玥发布了新的文献求助50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595654
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817999
捐赠科研通 4651355
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503514
关于科研通互助平台的介绍 1469754