Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 化学 海洋学 管理 经济 基因 地质学
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研求求你嘛完成签到,获得积分10
刚刚
愉快的苑博完成签到,获得积分10
1秒前
次一口多多完成签到,获得积分10
1秒前
1秒前
xx发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
liu发布了新的文献求助10
2秒前
yordeabese完成签到,获得积分10
2秒前
Ava应助轩辕雨文采纳,获得20
2秒前
2秒前
2秒前
Shalala完成签到,获得积分10
3秒前
3秒前
Sunyidan完成签到,获得积分10
3秒前
zhangyue7777完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
cc完成签到 ,获得积分10
5秒前
安_完成签到,获得积分10
5秒前
6秒前
enen完成签到,获得积分10
6秒前
活泼音响完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助莉莉酱采纳,获得10
7秒前
白鹿发布了新的文献求助10
7秒前
8秒前
一一应助zyy采纳,获得10
9秒前
10秒前
科研通AI6应助liu采纳,获得10
10秒前
糊涂的MJ完成签到,获得积分20
10秒前
幼儿园抢饭第一名完成签到,获得积分20
11秒前
wz发布了新的文献求助10
12秒前
12秒前
后知不觉发布了新的文献求助10
13秒前
13秒前
嘿嘿嘿关注了科研通微信公众号
14秒前
14秒前
科目三应助一切顺利元元采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836