Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 化学 海洋学 管理 经济 基因 地质学
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼小丸子完成签到 ,获得积分10
1秒前
魔幻安筠发布了新的文献求助10
1秒前
1秒前
Zhangfu完成签到,获得积分10
2秒前
李星发布了新的文献求助10
2秒前
123完成签到 ,获得积分10
3秒前
fairy发布了新的文献求助10
3秒前
my123发布了新的文献求助10
4秒前
共享精神应助小小怪采纳,获得10
6秒前
鹿阿布发布了新的文献求助10
6秒前
张利双发布了新的文献求助10
7秒前
U9A发布了新的文献求助10
7秒前
orixero应助文献查找采纳,获得10
8秒前
李星完成签到,获得积分20
10秒前
11秒前
李明涵完成签到 ,获得积分10
11秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助博修采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得30
12秒前
科研通AI5应助学术版7e采纳,获得10
12秒前
Akim应助科研通管家采纳,获得30
13秒前
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
Rondab应助CHEN采纳,获得10
13秒前
王359发布了新的文献求助10
14秒前
可爱的函函应助pipi采纳,获得10
15秒前
科研通AI5应助猪猪hero采纳,获得10
15秒前
空白的卡卡完成签到,获得积分10
16秒前
16秒前
文静的天蓝完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578