Meta-learning for few-shot time series forecasting

计算机科学 人工智能 机器学习 元学习(计算机科学) 稳健性(进化) 时间序列 任务(项目管理) 基线(sea) 人工神经网络 生物化学 化学 海洋学 管理 经济 基因 地质学
作者
Feng Xiao,Lu Liu,Jiayu Han,Guo De-Gui,Shang Wang,Hai Cui,Tao Peng
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (1): 325-341 被引量:5
标识
DOI:10.3233/jifs-212228
摘要

Time series forecasting (TSF) is significant for many applications, therefore the exploration and study for this problem has been proceeding. With the advances of computing power, deep neural networks (DNNs) have shown powerful performance on many machine learning tasks when considerable amounts of data can be used. However, sufficient data may be unavailable in some scenarios, which leads to performance degradation or even not working of DNN-based models. In this paper, we focus on few-shot time series forecasting task and propose to employ meta-learning to alleviate the problems caused by insufficient training data. Therefore, we propose a meta-learning-based prediction mechanism for few-shot time series forecasting task, which mainly consists of meta-training and meta-testing. The meta-training phase uses first-order model-agnostic meta-learning algorithm (MAML) as a core component to conduct cross-task training, and thus our method also inherits the advantages of the MAML, i.e., model-agnostic, in the sense that our method is compatible with any model trained with gradient descent. In the meta-testing phase, the DNN-based models are fine-tuned by the small number of time series data from an unseen task in the meta-training phase. We design two groups of comparison models to validate the effectiveness of our method. The first group, as the baseline models, is trained directly on specific time series dataset from target task. The second group, as comparison models, is trained by our proposed method. Also, we conduct data sensitivity study to validate the robustness of our method. The experimental results indicate the second group models outperform the first in different degrees in terms of prediction accuracy and convergence speed, and our method has strong robustness for forecast horizons and data scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光亮向露完成签到,获得积分10
刚刚
刚刚
橙子发布了新的文献求助10
刚刚
张昀倩发布了新的文献求助10
1秒前
1秒前
李一一完成签到 ,获得积分10
1秒前
1秒前
无花果应助大宝采纳,获得10
1秒前
1秒前
DHL完成签到,获得积分10
2秒前
XylonYu完成签到,获得积分10
2秒前
2秒前
2秒前
ZQJ完成签到,获得积分10
3秒前
3秒前
华仔应助荧123456采纳,获得10
3秒前
英俊的铭应助常远采纳,获得10
3秒前
nieanicole完成签到,获得积分10
3秒前
谢昱完成签到,获得积分10
4秒前
白小常应助冷傲凝琴采纳,获得10
4秒前
归尘发布了新的文献求助10
4秒前
4秒前
ypeng发布了新的文献求助30
4秒前
外向小之发布了新的文献求助10
5秒前
呜呜呜完成签到,获得积分10
5秒前
song发布了新的文献求助10
6秒前
陈可可发布了新的文献求助10
6秒前
6秒前
壮观诗桃发布了新的文献求助10
6秒前
CipherSage应助可靠冥幽采纳,获得10
6秒前
Akim应助blueskyzhi采纳,获得10
6秒前
huan完成签到,获得积分10
6秒前
lyl发布了新的文献求助10
6秒前
phoenixsun发布了新的文献求助30
7秒前
7秒前
7秒前
华仔应助来轩采纳,获得10
8秒前
zuozuo1993发布了新的文献求助10
8秒前
初遇之时最暖完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313