电阻抗
荷电状态
阻抗参数
电池(电)
等效电路
健康状况
介电谱
等效阻抗变换
输出阻抗
电子工程
材料科学
控制理论(社会学)
电气工程
化学
计算机科学
工程类
电压
物理
功率(物理)
电化学
热力学
人工智能
物理化学
控制(管理)
电极
作者
Kieran Mc Carthy,Hemtej Gullapalli,Kevin M. Ryan,Tadhg Kennedy
标识
DOI:10.1016/j.est.2022.104608
摘要
Electrochemical impedance spectroscopy (EIS) is an effective characterization tool for a multitude of battery states including state of charge (SoC), state of health (SoH) and internal temperature (IT). The intrinsic relationship between equivalent circuit elements and components of an impedance spectra (frequency, real, imaginary and phase) could be exploited to estimate the battery state at a given point of time without the need of continuous historical tracking information. Identification and analysis of battery state sensitive impedance variables is paramount for the development of any impedance-based battery management system (BMS). In this paper, correlation analysis between equivalent circuit elements and impedance spectra of multiple commercial Li-ion polymer batteries at varying SoC, SoH and IT levels was performed to identify and quantify the degree of dependence. Curve fitting techniques were used to fit the measured Impedance spectra on to an equivalent circuit model (ECM) to extract the circuit elements. Pearson's r correlation matrix was employed for quantifying the degree of correlation between each impedance variable and state parameter. Optimal impedance variables that demonstrated high dependence with SoC, SoH and IT are then proposed in this paper. Knowledge of this information is of high value to develop a direct impedance-based state estimation models for real time battery management systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI