解聚
链式转移
化学
聚合
木筏
可逆加成-断裂链转移聚合
高分子化学
聚合物
自由基聚合
单体
甲基丙烯酸甲酯
光化学
有机化学
作者
Hyun Suk Wang,Nghia P. Truong,Zhipeng Pei,Michelle L. Coote,Athina Anastasaki
摘要
The ability to reverse controlled radical polymerization and regenerate the monomer would be highly beneficial for both fundamental research and applications, yet this has remained very challenging to achieve. Herein, we report a near-quantitative (up to 92%) and catalyst-free depolymerization of various linear, bulky, cross-linked, and functional polymethacrylates made by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Key to our approach is to exploit the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of both conventional (e.g., poly(methyl methacrylate)) and bulky (e.g., poly(oligo(ethylene glycol) methyl ether methacrylate)) polymers. Importantly, the depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. This work expands the potential of polymers made by controlled radical polymerization, pushes the boundaries of depolymerization, offers intriguing mechanistic aspects, and enables new applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI