内质网
未折叠蛋白反应
细胞生物学
烟酰胺单核苷酸
氧化应激
化学
线粒体分裂
细胞凋亡
活性氧
线粒体
生物化学
生物
烟酰胺腺嘌呤二核苷酸
NAD+激酶
酶
作者
Hanfang Zeng,Jie Xu,Xinling Wang,Shujie Li,Zhaoyu Han
标识
DOI:10.1016/j.ecoenv.2022.113441
摘要
Heat stress is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. Abnormally high environmental temperature induces oxidative stress and apoptosis in bovine mammary epithelial cells (BMECs). Nicotinamide mononucleotide (NMN) has beneficial effects in maintaining the cellular physiological functions. In this study, we evaluate the protective effect of NMN on heat stress-induced apoptosis of BMECs and explore the potential underlying mechanisms. Our results showed that heat stress considerably decreased cell viability in BMECs, whereas pretreatment of BMECs with NMN (150 μM) for 24 h significantly alleviated the negative effects of heat stress on cells. NMN protected BMECs from heat stress-induced oxidative stress by inhibiting the excessive accumulation of reactive oxygen species (ROS) and increasing the activity of antioxidant enzymes. It also inhibited apoptosis by reducing the ratio of Bax/Bcl2 and blocking proteolytic the cleavage of Caspase-3 in heat stressed-BMECs. Importantly, NMN treatment could reduce mitochondrial damage through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (MFN1, 2); and suppress endoplasmic reticulum stress through unfolded protein response regulator Glucose regulated protein 78 (GRP78), and downstream elements Recombinant activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Above all, our results demonstrate that NMN supplemention attenuates heat stress-induced oxidative stress and apoptosis in BMECs by maintaining mitochondrial fission and fusion, and regulating endoplasmic reticulum stress, which provides the convincing evidence that NMN has valuable potential in alleviating mammary gland injury of dairy cows caused by environmental heat stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI