An Overview of Pavement Degradation Prediction Models

路面管理 路面工程 预测建模 国际粗糙度指数 性能预测 计算机科学 工程类 沥青路面 过程(计算) 运输工程 沥青 土木工程 机器学习 模拟 表面光洁度 机械工程 地图学 操作系统 地理
作者
Amir Shtayat,Sara Moridpour,Berthold Best,Shahriar Rumi
出处
期刊:Journal of Advanced Transportation [Hindawi Publishing Corporation]
卷期号:2022: 1-15 被引量:40
标识
DOI:10.1155/2022/7783588
摘要

Pavement management systems (PMSs) have a primary role in determining pavement condition monitoring and maintenance strategies. Moreover, many researchers have focused on pavement condition evaluation tools, starting with data collection, followed by processing, analyzing, and ultimately reaching practical conclusions regarding pavement condition. The analysis step is considered an essential part of the pavement condition evaluation process, as it focuses on the tools used to find the most accurate results. On the other hand, prediction models are important tools used in pavement condition evaluation to determine the current and future performance of the road pavement. Therefore, pavement condition prediction has an effective and significant role in identifying the appropriate maintenance techniques and treatment processes. Moreover, pavement performance indices are commonly used as key indicators to describe the condition of pavement surfaces and the level of pavement degradation. This paper systematically summarizes the existing performance prediction models conducted to predict the condition of asphalt pavement degradation using pavement condition indexes (PCI) and the international roughness index (IRI). These performance indices are commonly used in pavement monitoring to accurately evaluate the health status of pavement. The paper also identifies and summarizes the most influencing parameters in road pavement condition prediction models and presents the strength and weaknesses of each prediction model. The findings show that most previous studies preferred machine learning approaches and artificial neural networks forecasting and estimating the road pavement conditions because of their ability to deal with massive data, their higher accuracy, and them being worthwhile in solving time-series problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歇洛克发布了新的文献求助10
1秒前
1122完成签到,获得积分10
2秒前
fl发布了新的文献求助10
2秒前
jenningseastera应助zzy采纳,获得10
2秒前
Yosia完成签到,获得积分10
4秒前
5秒前
byw完成签到,获得积分10
7秒前
8秒前
wangfugui发布了新的文献求助10
9秒前
9秒前
伍思敏关注了科研通微信公众号
10秒前
阿秋完成签到,获得积分10
11秒前
summer完成签到 ,获得积分10
11秒前
11秒前
ztlooo发布了新的文献求助20
11秒前
mimier发布了新的文献求助30
13秒前
支烨霖发布了新的文献求助10
14秒前
科目三应助xin采纳,获得10
14秒前
科目三应助YJ888采纳,获得10
15秒前
16秒前
17秒前
Doner完成签到,获得积分10
20秒前
科研通AI5应助A高采纳,获得30
21秒前
科研通AI5应助玩命的一笑采纳,获得10
22秒前
吉吉完成签到,获得积分10
22秒前
糖炒栗子完成签到,获得积分10
22秒前
qy完成签到 ,获得积分10
23秒前
24秒前
25秒前
北beibe完成签到,获得积分10
26秒前
27秒前
panpanliumin完成签到,获得积分0
28秒前
28秒前
29秒前
bbr发布了新的文献求助10
30秒前
伍思敏发布了新的文献求助10
31秒前
上官若男应助我爱物理采纳,获得10
34秒前
34秒前
wanci应助识途采纳,获得10
37秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772636
求助须知:如何正确求助?哪些是违规求助? 3318239
关于积分的说明 10189275
捐赠科研通 3033061
什么是DOI,文献DOI怎么找? 1664029
邀请新用户注册赠送积分活动 796055
科研通“疑难数据库(出版商)”最低求助积分说明 757214