Workflow performance prediction based on graph structure aware deep attention neural network

工作流程 计算机科学 云计算 有向无环图 机器学习 人工智能 数据挖掘 调度(生产过程) 图形 分布式计算 理论计算机科学 数据库 算法 操作系统 运营管理 经济
作者
Jixiang Yu,Ming Gao,Yuchan Li,Zehui Zhang,W.H. Ip,Kai Leung Yung
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:27: 100337-100337 被引量:18
标识
DOI:10.1016/j.jii.2022.100337
摘要

With the rapid growth of cloud computing, efficient operational optimization and resource scheduling of complex cloud business processes rely on real-time and accurate performance prediction. Previous research on cloud computing performance prediction focused on qualitative (heuristic rules), model-driven, or coarse-grained time-series prediction, which ignore the study of historical performance, resource allocation status and service sequence relationships of workflow services. There are even fewer studies on prediction for workflow graph data due to the lack of available public datasets. In this study, from Alibaba Cloud's Cluster-trace-v2018, we extract nearly one billion offline task instance records into a new dataset, which contains approximately one million workflows and their corresponding directed acyclic graph (DAG) matrices. We propose a novel workflow performance prediction model (DAG-Transformer) to address the aforementioned challenges. In DAG-Transformer, we design a customized position encoding matrix and an attention mask for workflows, which can make full use of workflow sequential and graph relations to improve the embedding representation and perception ability of the deep neural network. The experiments validate the necessity of integrating graph-structure information in workflow prediction. Compared with mainstream deep learning (DL) methods and several classic machine learning (ML) algorithms, the accuracy of DAG-Transformer is the highest. DAG-Transformer can achieve 85-92% CPU prediction accuracy and 94-98% memory prediction accuracy, while maintaining high efficiency and low overheads. This study establishes a new paradigm and baseline for workflow performance prediction and provides a new way for facilitating workflow scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
库里也搞科研完成签到,获得积分20
1秒前
king19861119完成签到,获得积分0
1秒前
VVV发布了新的文献求助10
1秒前
mar1ne完成签到 ,获得积分10
1秒前
ljb完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
echo发布了新的文献求助10
3秒前
4秒前
danyan发布了新的文献求助10
4秒前
可可豆完成签到,获得积分10
5秒前
7秒前
lalala发布了新的文献求助10
7秒前
happysalt发布了新的文献求助10
9秒前
10秒前
chenjiaye发布了新的文献求助10
10秒前
深情安青应助princelee采纳,获得10
10秒前
徐小发布了新的文献求助10
11秒前
11秒前
Ava应助钱来采纳,获得10
11秒前
polarisla完成签到,获得积分10
12秒前
杨纯宇发布了新的文献求助10
12秒前
清风完成签到,获得积分10
12秒前
小二郎应助温暖的千亦采纳,获得10
13秒前
13秒前
XG发布了新的文献求助10
14秒前
14秒前
傲娇吐司发布了新的文献求助10
14秒前
小猪孩发布了新的文献求助10
15秒前
平淡的老师完成签到,获得积分10
15秒前
16秒前
16秒前
长情的涔完成签到 ,获得积分10
17秒前
江山发布了新的文献求助10
17秒前
龙辉完成签到,获得积分10
18秒前
19秒前
张怡博完成签到 ,获得积分10
19秒前
善良又亦发布了新的文献求助10
19秒前
20秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207077
求助须知:如何正确求助?哪些是违规求助? 2856482
关于积分的说明 8105015
捐赠科研通 2521596
什么是DOI,文献DOI怎么找? 1354957
科研通“疑难数据库(出版商)”最低求助积分说明 642125
邀请新用户注册赠送积分活动 613343