Workflow performance prediction based on graph structure aware deep attention neural network

工作流程 计算机科学 云计算 有向无环图 机器学习 人工智能 数据挖掘 调度(生产过程) 图形 分布式计算 理论计算机科学 数据库 算法 操作系统 运营管理 经济
作者
Jixiang Yu,Ming Gao,Yuchan Li,Zehui Zhang,W.H. Ip,Kai Leung Yung
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:27: 100337-100337 被引量:18
标识
DOI:10.1016/j.jii.2022.100337
摘要

With the rapid growth of cloud computing, efficient operational optimization and resource scheduling of complex cloud business processes rely on real-time and accurate performance prediction. Previous research on cloud computing performance prediction focused on qualitative (heuristic rules), model-driven, or coarse-grained time-series prediction, which ignore the study of historical performance, resource allocation status and service sequence relationships of workflow services. There are even fewer studies on prediction for workflow graph data due to the lack of available public datasets. In this study, from Alibaba Cloud's Cluster-trace-v2018, we extract nearly one billion offline task instance records into a new dataset, which contains approximately one million workflows and their corresponding directed acyclic graph (DAG) matrices. We propose a novel workflow performance prediction model (DAG-Transformer) to address the aforementioned challenges. In DAG-Transformer, we design a customized position encoding matrix and an attention mask for workflows, which can make full use of workflow sequential and graph relations to improve the embedding representation and perception ability of the deep neural network. The experiments validate the necessity of integrating graph-structure information in workflow prediction. Compared with mainstream deep learning (DL) methods and several classic machine learning (ML) algorithms, the accuracy of DAG-Transformer is the highest. DAG-Transformer can achieve 85-92% CPU prediction accuracy and 94-98% memory prediction accuracy, while maintaining high efficiency and low overheads. This study establishes a new paradigm and baseline for workflow performance prediction and provides a new way for facilitating workflow scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe完成签到 ,获得积分10
1秒前
香菜卷煎饼完成签到,获得积分10
2秒前
念65发布了新的文献求助10
2秒前
机灵似狮发布了新的文献求助10
4秒前
5秒前
5秒前
owen完成签到,获得积分20
5秒前
折耳根拌香菜完成签到,获得积分10
5秒前
英仙座完成签到,获得积分10
6秒前
时闲应助猪猪hero采纳,获得10
6秒前
CAOHOU应助strong.quite采纳,获得10
8秒前
脑洞疼应助Crush采纳,获得10
8秒前
8秒前
英姑应助嗯嗯嗯采纳,获得10
8秒前
qsxy发布了新的文献求助10
9秒前
oy完成签到,获得积分10
9秒前
9秒前
kyJYbs完成签到,获得积分10
10秒前
果实发布了新的文献求助10
10秒前
10秒前
嘻嘻滑呀完成签到,获得积分10
10秒前
11秒前
刘刘大顺发布了新的文献求助10
11秒前
12秒前
dy__发布了新的文献求助10
12秒前
yaya完成签到,获得积分10
13秒前
13秒前
dudao完成签到,获得积分10
13秒前
15秒前
15秒前
无聊的念蕾完成签到 ,获得积分10
15秒前
瓜田里的闰土完成签到,获得积分10
15秒前
点点完成签到,获得积分10
15秒前
mm完成签到,获得积分10
15秒前
墨123完成签到,获得积分10
15秒前
mengliu完成签到,获得积分10
16秒前
17秒前
DJHKFD完成签到,获得积分10
18秒前
胡锦久发布了新的文献求助10
18秒前
zyy发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128