核心
变性(医学)
生物
椎间盘
表型
细胞生物学
基因
细胞
解剖
病理
医学
遗传学
作者
Hua Zhong,Zhihong Zhou,Lebin Guo,Fusheng Liu,Xiaobin Wang,Jing Li,Guohua Lv,Ming‐Xiang Zou
标识
DOI:10.1016/j.trsl.2022.02.006
摘要
Long noncoding RNAs (lncRNAs) and miRNAs have been reported to participate in intervertebral disc degeneration (IDD) progression. However, the key lncRNA-miRNA axis and its corresponding affected hub genes in IDD remain unknown. In this study, weighted gene coexpression network analysis (WGCNA) was first used to determine the key gene cluster and hub genes implicated in IDD progression. The expression levels of ADIRF-AS1, miR-214-3p, and SERPINA1 in nucleus pulposus (NP) tissues were detected. The ADIRF-AS1/miR-214-3p/SERPINA1 axis was identified, and its effects on the proliferation, senescence, and apoptosis of NP cells were investigated in vitro and in vivo. SERPINA1 overexpression in NP cells promoted cell viability and inhibited cell apoptosis and senescence. Moreover, SERPINA1 regulated the IDD grade in rat models. The lncRNA ADIRF-AS1 was downregulated in high-grade degeneration NP tissues and positively correlated with SERPINA1. ADIRF-AS1 overexpression attenuated cellular degenerative changes in NP cells. miR-214-3p directly bound to SERPINA1 and ADIRF-AS1 and negatively regulated ADIRF-AS1 expression. miR-214-3p inhibition exerted similar effects on cellular degenerative changes in NP cells to SERPINA1 or ADIRF-AS1 overexpression. Furthermore, miR-214-3p overexpression partially reversed the effects of ADIRF-AS1 overexpression. Collectively, these data suggest that ADIRF-AS1 overexpression could mitigate IDD by binding to miR-214-3p to upregulate SERPINA1. Additional studies (especially those using an axial loading-induced IDD animal model) will be needed to further validate the role of the ADIRF-AS1/miR-214-3p/SERPINA1 signaling axis in IDD progression. Long noncoding RNAs (lncRNAs) and miRNAs have been reported to participate in intervertebral disc degeneration (IDD) progression. However, the key lncRNA-miRNA axis and its corresponding affected hub genes in IDD remain unknown. In this study, weighted gene coexpression network analysis (WGCNA) was first used to determine the key gene cluster and hub genes implicated in IDD progression. The expression levels of ADIRF-AS1, miR-214-3p, and SERPINA1 in nucleus pulposus (NP) tissues were detected. The ADIRF-AS1/miR-214-3p/SERPINA1 axis was identified, and its effects on the proliferation, senescence, and apoptosis of NP cells were investigated in vitro and in vivo. SERPINA1 overexpression in NP cells promoted cell viability and inhibited cell apoptosis and senescence. Moreover, SERPINA1 regulated the IDD grade in rat models. The lncRNA ADIRF-AS1 was downregulated in high-grade degeneration NP tissues and positively correlated with SERPINA1. ADIRF-AS1 overexpression attenuated cellular degenerative changes in NP cells. miR-214-3p directly bound to SERPINA1 and ADIRF-AS1 and negatively regulated ADIRF-AS1 expression. miR-214-3p inhibition exerted similar effects on cellular degenerative changes in NP cells to SERPINA1 or ADIRF-AS1 overexpression. Furthermore, miR-214-3p overexpression partially reversed the effects of ADIRF-AS1 overexpression. Collectively, these data suggest that ADIRF-AS1 overexpression could mitigate IDD by binding to miR-214-3p to upregulate SERPINA1. Additional studies (especially those using an axial loading-induced IDD animal model) will be needed to further validate the role of the ADIRF-AS1/miR-214-3p/SERPINA1 signaling axis in IDD progression.
科研通智能强力驱动
Strongly Powered by AbleSci AI