Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling

环境科学 化学 氮气 环境化学 有机化学
作者
Baorong Wang,Yanqun Huang,Na Li,Hongjia Yao,E Yang,Andrey Soromotin,Yakov Kuzyakov,V. S. Cheptsov,Yang Yang,Shaoshan An
出处
期刊:Soil Biology & Biochemistry [Elsevier]
卷期号:167: 108607-108607 被引量:45
标识
DOI:10.1016/j.soilbio.2022.108607
摘要

Microbial biomass is increasingly considered to be the main source of organic carbon (C) sequestration in soils. Quantitative information on the contribution of microbial necromass to soil organic carbon (SOC) formation and the factors driving necromass accumulation, decomposition and stabilization during the initial soil formation in biological crusts (biocrusts) is absent. To address this knowledge gap, we investigated the composition of microbial necromass and its contributions to SOC sequestration in a biocrust formation sequence consisting of five stages: bare sand, cyanobacteria stage, cyanobacteria-moss stage, moss-cyanobacteria stage, and moss stage on sandy parent material on the Loess Plateau. The fungal and bacterial necromass C content in soil was analyzed based on amino sugars - the cell wall biomarker. Microbial necromass was an important source of SOC, and was incorporated into the particulate and mineral-associated organic C (MAOC). Because bacteria have smaller and thinner cell wall fragments as well as more proteins than fungi, bacterial necromass mainly contributed to the MAOC pool, while fungal residues remained more in the particulate organic C (POC). MAOC pool was saturated fast with the increase of microbial necromass, and POC more rapid accumulation than MAOC suggests that the clay content was the limiting factor for stable C accumulation in this sandy soil. The necromass exceeding the MAOC stabilization level was stored in the labile POC pool (especially necromass from fungi). Activities of four enzymes (i.e., β-1,4-glucosidase, β-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase, and alkaline phosphatase) increasing with fungal and bacterial necromass suggest that the raised activity of living microorganisms accelerated the turnover and formation of necromass. Microbial N limitation raised the production of N acquisition enzymes (e.g., β-1,4-N-acetyl-glucosaminidase and leucine aminopeptidase) to break down necromass compounds, leading to further increase of the nutrient pool in soil solution. The decrease of microbial N limitation along the biocrusts formation chronosequence is an important factor for the necromass accumulation during initial soil development. High microbial N demands and insufficient clay protection lead to fast necromass reutilization by microorganisms and thus, result in a low necromass accumulation coefficient, that is, the ratio of microbial necromass to living microbial biomass (on average, 9.6). Consequently, microbial necromass contribution to SOC during initial soil formation by biocrust is lower (12–25%) than in fully developed soils (33%–60%, literature data). Nitrogen (N) limitation of microorganisms and an increased ratio between N-acquiring enzyme activities and microbial N, as well as limited clay protection, resulted in a low contribution of microbial necromass to SOC by initial formation of biocrust-covered sandy soil. Summarizing, soil development leads not only to SOC accumulation, but also to increased contribution of microbial necromass to SOC, whereas the plant litter contribution decreases. • Microbial necromass C contribution to SOC in biocrust-covered sandy soils was less than 25%. • Biocrust-covered sandy soils have a low necromass accumulation coefficient. • Low soil clay content leads to more microbial necromass forming particulate organic carbon. • Microbial nitrogen limitation was common in biocrust formation sequences. • Microbial N limitation and insufficient clay protection control the necromass dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyz发布了新的文献求助10
刚刚
1秒前
小蘑菇应助阿良采纳,获得10
4秒前
深情安青应助听风说情话采纳,获得10
5秒前
勤恳的磬发布了新的文献求助10
5秒前
6秒前
闫霄溯完成签到,获得积分10
6秒前
可爱的函函应助xyz采纳,获得10
6秒前
Billy发布了新的文献求助10
7秒前
40873完成签到,获得积分10
7秒前
伊麦香城发布了新的文献求助10
8秒前
10秒前
烟花应助开放觅夏采纳,获得30
11秒前
13秒前
15秒前
乐乐应助清脆的乌冬面采纳,获得10
15秒前
小于一完成签到 ,获得积分10
16秒前
17秒前
在水一方应助Shxu采纳,获得10
18秒前
23秒前
23秒前
海绵宝宝前列腺儿完成签到,获得积分10
24秒前
24秒前
伊麦香城发布了新的文献求助10
26秒前
zzlvve发布了新的文献求助10
26秒前
111111发布了新的文献求助10
28秒前
不配.应助shaco采纳,获得10
28秒前
suijisuiji1完成签到,获得积分10
30秒前
30秒前
星辰大海应助哈哈哈采纳,获得10
31秒前
CipherSage应助李李原上采纳,获得10
33秒前
himat完成签到,获得积分10
33秒前
34秒前
36秒前
小小果妈发布了新的文献求助10
36秒前
38秒前
39秒前
re发布了新的文献求助10
40秒前
suijisuiji1发布了新的文献求助10
41秒前
木木完成签到 ,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870