Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling

环境科学 化学 氮气 有机化学
作者
Baorong Wang,Yimei Huang,Na Li,Hongjia Yao,E Yang,Andrey Soromotin,Yakov Kuzyakov,В. С. Чепцов,Yang Yang,Shaoshan An
出处
期刊:Soil Biology & Biochemistry [Elsevier BV]
卷期号:167: 108607-108607 被引量:101
标识
DOI:10.1016/j.soilbio.2022.108607
摘要

Microbial biomass is increasingly considered to be the main source of organic carbon (C) sequestration in soils. Quantitative information on the contribution of microbial necromass to soil organic carbon (SOC) formation and the factors driving necromass accumulation, decomposition and stabilization during the initial soil formation in biological crusts (biocrusts) is absent. To address this knowledge gap, we investigated the composition of microbial necromass and its contributions to SOC sequestration in a biocrust formation sequence consisting of five stages: bare sand, cyanobacteria stage, cyanobacteria-moss stage, moss-cyanobacteria stage, and moss stage on sandy parent material on the Loess Plateau. The fungal and bacterial necromass C content in soil was analyzed based on amino sugars - the cell wall biomarker. Microbial necromass was an important source of SOC, and was incorporated into the particulate and mineral-associated organic C (MAOC). Because bacteria have smaller and thinner cell wall fragments as well as more proteins than fungi, bacterial necromass mainly contributed to the MAOC pool, while fungal residues remained more in the particulate organic C (POC). MAOC pool was saturated fast with the increase of microbial necromass, and POC more rapid accumulation than MAOC suggests that the clay content was the limiting factor for stable C accumulation in this sandy soil. The necromass exceeding the MAOC stabilization level was stored in the labile POC pool (especially necromass from fungi). Activities of four enzymes (i.e., β-1,4-glucosidase, β-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase, and alkaline phosphatase) increasing with fungal and bacterial necromass suggest that the raised activity of living microorganisms accelerated the turnover and formation of necromass. Microbial N limitation raised the production of N acquisition enzymes (e.g., β-1,4-N-acetyl-glucosaminidase and leucine aminopeptidase) to break down necromass compounds, leading to further increase of the nutrient pool in soil solution. The decrease of microbial N limitation along the biocrusts formation chronosequence is an important factor for the necromass accumulation during initial soil development. High microbial N demands and insufficient clay protection lead to fast necromass reutilization by microorganisms and thus, result in a low necromass accumulation coefficient, that is, the ratio of microbial necromass to living microbial biomass (on average, 9.6). Consequently, microbial necromass contribution to SOC during initial soil formation by biocrust is lower (12–25%) than in fully developed soils (33%–60%, literature data). Nitrogen (N) limitation of microorganisms and an increased ratio between N-acquiring enzyme activities and microbial N, as well as limited clay protection, resulted in a low contribution of microbial necromass to SOC by initial formation of biocrust-covered sandy soil. Summarizing, soil development leads not only to SOC accumulation, but also to increased contribution of microbial necromass to SOC, whereas the plant litter contribution decreases. • Microbial necromass C contribution to SOC in biocrust-covered sandy soils was less than 25%. • Biocrust-covered sandy soils have a low necromass accumulation coefficient. • Low soil clay content leads to more microbial necromass forming particulate organic carbon. • Microbial nitrogen limitation was common in biocrust formation sequences. • Microbial N limitation and insufficient clay protection control the necromass dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tao驳回了丘比特应助
刚刚
1秒前
中科院一区选手完成签到,获得积分10
1秒前
bkagyin应助笨笨含羞草采纳,获得10
1秒前
lc完成签到,获得积分10
2秒前
小野发布了新的文献求助20
4秒前
6秒前
sx发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
田様应助苏苏采纳,获得10
8秒前
keaid完成签到 ,获得积分10
8秒前
憨憨完成签到,获得积分10
9秒前
欣慰代桃完成签到,获得积分20
10秒前
liii发布了新的文献求助10
10秒前
11秒前
13秒前
SciGPT应助xiaoT采纳,获得10
13秒前
菜菜泽发布了新的文献求助10
15秒前
CipherSage应助FDD采纳,获得30
16秒前
小王完成签到,获得积分20
16秒前
科研Mayormm发布了新的文献求助10
17秒前
17秒前
20秒前
21秒前
还不错完成签到,获得积分10
22秒前
科研通AI2S应助小王采纳,获得10
22秒前
Xie完成签到,获得积分10
22秒前
24秒前
24秒前
ED应助大菊采纳,获得10
25秒前
CodeCraft应助yiyi采纳,获得30
27秒前
28秒前
潇湘夜雨发布了新的文献求助20
29秒前
椰子完成签到,获得积分10
30秒前
enchanted完成签到,获得积分10
30秒前
yyyyyyy发布了新的文献求助30
31秒前
31秒前
Angelo完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202