化学
氨基酸
溶解度
苯丙氨酸
有机化学
色氨酸
水溶液
缬氨酸
生物化学
作者
Mohammed S. Alsalhi,K. L. Andrew Chan
标识
DOI:10.1016/j.ijpharm.2022.121591
摘要
A number of amino acids (AA) has been investigated as promising hydrotropes to improve the solubility of biopharmaceutics classification system (BCS) class II drugs carbamazepine (CBZ) and indomethacin (IND) via specific complexations in aqueous solution. The aim of this work is to understand the molecular basis of these hydrotropic interactions by investigating the two model drugs combined with 12 amino acids including phenylalanine, tryptophan, isoleucine, proline, valine, glycine, serine, threonine, arginine, lysine, histidine and aspartic acid in water at 25 °C, 30 °C and 45 °C. The amino acids were chosen based on their different side chains (neutral aromatic, aliphatic, polar charged or uncharged) to investigate their hydrotropic performance. A linear solubility curve was observed between indomethacin and mono-neutral hydrophobic amino acids (phenylalanine, tryptophan, isoleucine, proline and valine) well beyond 1:1 molar ratio indicating the interaction is predominantly non-ionic between the drug and the hydrotropes. Interestingly, the aqueous solubility of carbamazepine (a neutral compound) was enhanced by neutral, charged basic or acidic amino acids, confirming the presence of hydrophobic interactions that involve H-bonds, H/π and π/π stacking and the results were confirmed by UV-Vis spectroscopy. A combination of multiple neutral amino acids showed additive hydrotropic effect in indomethacin solubility with up to 7-folds increases. This study demonstrates for the first time the potential of amino acids as hydrotropes to improve aqueous solubility of poorly water-soluble drugs, which is important for pharmaceutical development.
科研通智能强力驱动
Strongly Powered by AbleSci AI