内在无序蛋白质
残留偶极耦合
化学物理
蛋白质动力学
构象集合
化学
放松(心理学)
分子动力学
蛋白质折叠
折叠(DSP实现)
统计物理学
物理
生物系统
作者
Pavithra M Naullage,Mojtaba Haghighatlari,Ashley Namini,João M.C. Teixeira,Jie Li,Ouwen Zhang,Claudiu C. Gradinaru,Julie D. Forman Kay,Teresa Head-Gordon
标识
DOI:10.1021/acs.jpcb.1c10925
摘要
Intrinsically disordered proteins and unfolded proteins have fluctuating conformational ensembles that are fundamental to their biological function and impact protein folding, stability, and misfolding. Despite the importance of protein dynamics and conformational sampling, time-dependent data types are not fully exploited when defining and refining disordered protein ensembles. Here we introduce a computational framework using an elastic network model and normal-mode displacements to generate a dynamic disordered ensemble consistent with NMR-derived dynamics parameters, including transverse R2 relaxation rates and Lipari-Szabo order parameters (S2 values). We illustrate our approach using the unfolded state of the drkN SH3 domain to show that the dynamical ensembles give better agreement than a static ensemble for a wide range of experimental validation data including NMR chemical shifts, J-couplings, nuclear Overhauser effects, paramagnetic relaxation enhancements, residual dipolar couplings, hydrodynamic radii, single-molecule fluorescence Förster resonance energy transfer, and small-angle X-ray scattering.
科研通智能强力驱动
Strongly Powered by AbleSci AI