亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning for mismatch removal via graph attention networks

人工智能 计算机科学 离群值 模式识别(心理学) 规范化(社会学) 姿势 图形 计算机视觉 尺度不变特征变换 特征提取 理论计算机科学 人类学 社会学
作者
Xingyu Jiang,Yang Wang,Aoxiang Fan,Jiayi Ma
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 181-195 被引量:12
标识
DOI:10.1016/j.isprsjprs.2022.06.009
摘要

Recovering camera pose from two-view images is a critical problem in photogrammetry and computer vision. For complex scenarios, point correspondences that are constructed by off-the-shelf feature matcher such as SIFT, would be corrupted by heavy outliers. In this case, traditional sampling consensus- or motion/geometrical coherence-based methods would suffer a lot from ensuring their assumptions. To this end, we propose a deep technique to better extract underlying geometry information from high-dimensional feature space for two-view geometry estimation. Unlike existing deep methods that use distribution-based normalization or explicitly aggregate neighboring correspondences, we propose a graph attention operation with multi-head mechanism, termed as GANet, to latently capture fine-grain contextual/geometrical relations among these corrupted correspondences. This encourages our network to learn informative representation for ensuring high graph similarity thus focusing more on inliers and restraining outliers. On this basis, our network can more easily infer inliers that are best to recover camera pose. Moreover, we also observe that the calculation of graph similarity for each node is only supported by partial node features. In this regard, we further propose a lightweight implementation for graph attention, namely Sparse GANet, which is performed by learning a sparse attention map based on block-wise operation and Sinkhorn normalization. This sparse strategy can largely reduce the memory and computational requests while maintaining the performance. Extensive experiments of pose estimation, outlier rejection and image registration on different challenging datasets, and combinational tests with different descriptor matchers and robust estimators, demonstrate the superiority and great generalization of our method against the state-of-the-art. In particular, we achieve at least 1.5% and 0.6% mAP(%)@5° enhancement on YFCC and SUN3D data for pose estimation, respectively. And our sparse GANet can reduce the model size to only 0.28 MB and the time cost to 16 ms, which is significant superior than SuperGlue that requires 12.02 MB and 68 ms. (Source code is available at https://github.com/StaRainJ/Code-of-GANet.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致咖啡完成签到 ,获得积分10
1分钟前
慕容天磊完成签到,获得积分10
2分钟前
爱静静完成签到,获得积分0
2分钟前
正直夜安完成签到 ,获得积分10
3分钟前
5分钟前
7分钟前
Ann完成签到,获得积分10
7分钟前
桃汁荔枝完成签到 ,获得积分10
7分钟前
连安阳完成签到,获得积分10
7分钟前
zsmj23完成签到 ,获得积分0
8分钟前
丘比特应助科研通管家采纳,获得30
8分钟前
田様应助科研通管家采纳,获得80
8分钟前
Hello应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
顾矜应助方方采纳,获得10
9分钟前
桃汁荔枝关注了科研通微信公众号
9分钟前
10分钟前
方方发布了新的文献求助10
10分钟前
sharronjxx应助方方采纳,获得10
10分钟前
方方完成签到,获得积分10
10分钟前
慕青应助科研通管家采纳,获得10
10分钟前
稻子完成签到 ,获得积分10
10分钟前
空曲完成签到 ,获得积分10
11分钟前
15分钟前
15分钟前
吕懿发布了新的文献求助10
15分钟前
标致诗双发布了新的文献求助10
15分钟前
大个应助吕懿采纳,获得10
15分钟前
16分钟前
标致诗双完成签到,获得积分10
16分钟前
18分钟前
大模型应助摇摇猪采纳,获得10
20分钟前
21分钟前
新奇完成签到 ,获得积分10
21分钟前
小蘑菇应助oleskarabach采纳,获得10
22分钟前
通科研完成签到 ,获得积分10
23分钟前
23分钟前
科研通AI2S应助谢小卷采纳,获得20
23分钟前
23分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052552
求助须知:如何正确求助?哪些是违规求助? 2709826
关于积分的说明 7418203
捐赠科研通 2354370
什么是DOI,文献DOI怎么找? 1245934
科研通“疑难数据库(出版商)”最低求助积分说明 605934
版权声明 595921