Heterogeneous graph neural network for attribute completion

计算机科学 嵌入 图形 特征(语言学) 节点(物理) 特征向量 编码(集合论) 理论计算机科学 数据挖掘 人工神经网络 语义学(计算机科学) 源代码 相似性(几何) 人工智能 哲学 语言学 结构工程 集合(抽象数据类型) 工程类 程序设计语言 图像(数学) 操作系统
作者
Kai Wang,Yanwei Yu,Chao Huang,Zhongying Zhao,Junyu Dong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109171-109171 被引量:7
标识
DOI:10.1016/j.knosys.2022.109171
摘要

Heterogeneous graphs consist of multiple types of nodes and edges, and contain comprehensive information and rich semantics, which can properly model real-world complex systems. However, the attribute values of nodes are often incomplete with many missing attributes, as the cost of collecting node attributes is prohibitively expensive or even impossible (e.g., sensitive personal information). While a handful of graph neural network (GNN) models are developed for attribute completion in heterogeneous networks, most of them either ignore the use of similarity between nodes in feature space, or overlook the different importance of different-order neighbor nodes for attribute completion, resulting in poor performance. In this paper, we propose a general Attribute Completion framework for HEterogeneous Networks (AC-HEN), which is composed of feature aggregation, structure aggregation, and multi-view embedding fusion modules. Specifically, AC-HEN leverages feature aggregation and structure aggregation to obtain multi-view embeddings considering neighbor aggregation in both feature space and network structural space, which distinguishes different contributions of different neighbor nodes by conducting weighted aggregation. Then AC-HEN uses the multi-view embeddings to complete the missing attributes via an embedding fusion module in a weak supervised learning paradigm. Extensive experiments on three real-world heterogeneous network datasets demonstrate the superiority of AC-HEN against state-of-the-art baselines in both attribute completion and node classification. The source code is available at: https://github.com/Code-husky/AC-HEN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
854fycchjh发布了新的文献求助30
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得30
2秒前
trayheep应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
飘飘素晴完成签到,获得积分10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
ChenXY应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
yanyan发布了新的文献求助10
4秒前
pluto应助期待未来的自己采纳,获得10
5秒前
CC发布了新的文献求助30
6秒前
8秒前
林溪完成签到,获得积分10
8秒前
人间草木完成签到,获得积分10
9秒前
善学以致用应助yuxiaoye采纳,获得10
10秒前
10秒前
诚心千筹发布了新的文献求助10
13秒前
小白完成签到 ,获得积分20
14秒前
15秒前
CC完成签到,获得积分10
15秒前
16秒前
Ava应助IRONY采纳,获得10
17秒前
Ava应助Paris采纳,获得10
17秒前
18秒前
脑洞疼应助叶思言采纳,获得10
18秒前
Oxygen完成签到,获得积分10
19秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794