Heterogeneous graph neural network for attribute completion

计算机科学 嵌入 图形 特征(语言学) 节点(物理) 特征向量 编码(集合论) 理论计算机科学 数据挖掘 人工神经网络 语义学(计算机科学) 源代码 相似性(几何) 人工智能 结构工程 操作系统 图像(数学) 工程类 哲学 集合(抽象数据类型) 程序设计语言 语言学
作者
Kai Wang,Yanwei Yu,Chao Huang,Zhongying Zhao,Junyu Dong
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109171-109171 被引量:26
标识
DOI:10.1016/j.knosys.2022.109171
摘要

Heterogeneous graphs consist of multiple types of nodes and edges, and contain comprehensive information and rich semantics, which can properly model real-world complex systems. However, the attribute values of nodes are often incomplete with many missing attributes, as the cost of collecting node attributes is prohibitively expensive or even impossible (e.g., sensitive personal information). While a handful of graph neural network (GNN) models are developed for attribute completion in heterogeneous networks, most of them either ignore the use of similarity between nodes in feature space, or overlook the different importance of different-order neighbor nodes for attribute completion, resulting in poor performance. In this paper, we propose a general Attribute Completion framework for HEterogeneous Networks (AC-HEN), which is composed of feature aggregation, structure aggregation, and multi-view embedding fusion modules. Specifically, AC-HEN leverages feature aggregation and structure aggregation to obtain multi-view embeddings considering neighbor aggregation in both feature space and network structural space, which distinguishes different contributions of different neighbor nodes by conducting weighted aggregation. Then AC-HEN uses the multi-view embeddings to complete the missing attributes via an embedding fusion module in a weak supervised learning paradigm. Extensive experiments on three real-world heterogeneous network datasets demonstrate the superiority of AC-HEN against state-of-the-art baselines in both attribute completion and node classification. The source code is available at: https://github.com/Code-husky/AC-HEN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助爱笑的天空采纳,获得10
1秒前
1秒前
xuexuexixi123完成签到 ,获得积分10
1秒前
3秒前
平淡的冰巧完成签到,获得积分10
3秒前
3秒前
浮游应助志不在科研采纳,获得10
4秒前
two发布了新的文献求助10
5秒前
懒洋洋完成签到 ,获得积分10
6秒前
JL发布了新的文献求助10
6秒前
Eddy完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
小杭76应助科研通管家采纳,获得10
7秒前
AMD发布了新的文献求助10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
7秒前
迷路元枫关注了科研通微信公众号
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
烤冷面应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
tuanheqi应助科研通管家采纳,获得150
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160