Heterogeneous graph neural network for attribute completion

计算机科学 嵌入 图形 特征(语言学) 节点(物理) 特征向量 编码(集合论) 理论计算机科学 数据挖掘 人工神经网络 语义学(计算机科学) 源代码 相似性(几何) 人工智能 结构工程 操作系统 图像(数学) 工程类 哲学 集合(抽象数据类型) 程序设计语言 语言学
作者
Kai Wang,Yanwei Yu,Chao Huang,Zhongying Zhao,Junyu Dong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109171-109171 被引量:7
标识
DOI:10.1016/j.knosys.2022.109171
摘要

Heterogeneous graphs consist of multiple types of nodes and edges, and contain comprehensive information and rich semantics, which can properly model real-world complex systems. However, the attribute values of nodes are often incomplete with many missing attributes, as the cost of collecting node attributes is prohibitively expensive or even impossible (e.g., sensitive personal information). While a handful of graph neural network (GNN) models are developed for attribute completion in heterogeneous networks, most of them either ignore the use of similarity between nodes in feature space, or overlook the different importance of different-order neighbor nodes for attribute completion, resulting in poor performance. In this paper, we propose a general Attribute Completion framework for HEterogeneous Networks (AC-HEN), which is composed of feature aggregation, structure aggregation, and multi-view embedding fusion modules. Specifically, AC-HEN leverages feature aggregation and structure aggregation to obtain multi-view embeddings considering neighbor aggregation in both feature space and network structural space, which distinguishes different contributions of different neighbor nodes by conducting weighted aggregation. Then AC-HEN uses the multi-view embeddings to complete the missing attributes via an embedding fusion module in a weak supervised learning paradigm. Extensive experiments on three real-world heterogeneous network datasets demonstrate the superiority of AC-HEN against state-of-the-art baselines in both attribute completion and node classification. The source code is available at: https://github.com/Code-husky/AC-HEN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助GooJohn采纳,获得10
刚刚
义气的羽毛完成签到,获得积分10
1秒前
Que完成签到 ,获得积分10
1秒前
caibaozi应助草莓布丁采纳,获得80
2秒前
小刺猬发布了新的文献求助10
3秒前
CorisKen应助缥缈问柳采纳,获得20
5秒前
5秒前
8秒前
yubin.cao完成签到,获得积分10
10秒前
尊敬依珊发布了新的文献求助10
11秒前
cindywu发布了新的文献求助10
11秒前
12秒前
12秒前
vigour发布了新的文献求助10
12秒前
yiryir完成签到 ,获得积分10
13秒前
YamDaamCaa应助沙拉依丁采纳,获得30
14秒前
妙aaa完成签到,获得积分10
15秒前
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
Liufgui应助科研通管家采纳,获得30
16秒前
YamDaamCaa应助科研通管家采纳,获得30
16秒前
Hello应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得30
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
PT177245发布了新的文献求助10
17秒前
耿春丽发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
18秒前
ylq完成签到,获得积分10
20秒前
123完成签到,获得积分10
21秒前
妖哥完成签到,获得积分10
21秒前
22秒前
桀桀桀发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052