Modeling of Porous Lithium Metal Electrodes: Turning the Li-Dendrite Problem Around

材料科学 电流密度 阳极 微观结构 多孔性 锂(药物) 集电器 电极 复合材料 分离器(采油) 电镀(地质) 电化学 电导率 化学工程 电解质 化学 热力学 医学 物理 物理化学 量子力学 地球物理学 地质学 工程类 内分泌学
作者
Giovanna Bucci,Tushar Swamy,W. Craig Carter,Morad Behandish
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:169 (7): 070501-070501 被引量:1
标识
DOI:10.1149/1945-7111/ac79d0
摘要

The properties of rechargeable lithium-ion batteries are determined by the electrochemical and kinetic properties of their constituent materials as well as by their underlying microstructure. Microstructural design can be leveraged to achieve a leap in performance and durability. Here we investigate a porous electrode structure, as a strategy to increase the surface area, and provide structural stability for Li-metal anodes. The porous architecture consists of a mixed electron/ion conductor that function as a scaffold for lithium metal deposition. A new finite element model was developed to simulate the large topological changes associated with Li plating/stripping. This model is used to predict the current density distribution as a function of material and structural properties. A dimensionless quantity that combines Li-ion conductivity, surface impedance and average pore size is shown to be a good indicator to predict the peak current density. Preventing current localization at the separator reduces the risk of cell shorting. The analyses show that the peak current scales as ( hG ) 1/2 , where h is the ratio between surface and bulk conductivity and G is the average pore size. Stability analyses suggest that the growth is morphologically stable, and that confining Li-plating into pores can enable high-energy density solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆dou发布了新的文献求助10
1秒前
旭日东升完成签到 ,获得积分10
2秒前
yyyyou完成签到,获得积分10
3秒前
科研通AI5应助xlj采纳,获得10
5秒前
Jenny应助WZ0904采纳,获得10
5秒前
弘一完成签到,获得积分10
5秒前
郑zhenglanyou完成签到 ,获得积分10
6秒前
8秒前
忧子忘完成签到,获得积分10
8秒前
9秒前
foreverchoi完成签到,获得积分10
9秒前
HH完成签到,获得积分20
9秒前
10秒前
whm完成签到,获得积分10
10秒前
12秒前
邬傥完成签到,获得积分10
13秒前
tomato应助执着采纳,获得20
14秒前
大方嵩发布了新的文献求助10
14秒前
梓ccc完成签到,获得积分10
14秒前
14秒前
求助发布了新的文献求助10
15秒前
风雨1210发布了新的文献求助10
15秒前
15秒前
16秒前
小梁要加油完成签到,获得积分20
16秒前
Alpha发布了新的文献求助10
17秒前
刘鹏宇发布了新的文献求助10
18秒前
zhangscience完成签到,获得积分10
18秒前
可爱的函函应助若狂采纳,获得10
19秒前
小蘑菇应助阿美采纳,获得30
19秒前
科研通AI2S应助机智小虾米采纳,获得10
20秒前
充电宝应助Xx.采纳,获得10
21秒前
zhangscience发布了新的文献求助10
22秒前
深情安青应助大方嵩采纳,获得10
23秒前
英俊的铭应助大方嵩采纳,获得10
23秒前
李还好完成签到,获得积分10
24秒前
满意的柏柳完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808