Lessons from infant learning for unsupervised machine learning

无监督学习 机器学习 人工智能 计算机科学 杠杆(统计) 聚类分析 感应转移 主动学习(机器学习) 机器人学习 机器人 移动机器人
作者
Lorijn Zaadnoordijk,Tarek R. Besold,Rhodri Cusack
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (6): 510-520 被引量:47
标识
DOI:10.1038/s42256-022-00488-2
摘要

The desire to reduce the dependence on curated, labeled datasets and to leverage the vast quantities of unlabeled data has triggered renewed interest in unsupervised (or self-supervised) learning algorithms. Despite improved performance due to approaches such as the identification of disentangled latent representations, contrastive learning and clustering optimizations, unsupervised machine learning still falls short of its hypothesized potential as a breakthrough paradigm enabling generally intelligent systems. Inspiration from cognitive (neuro)science has been based mostly on adult learners with access to labels and a vast amount of prior knowledge. To push unsupervised machine learning forward, we argue that developmental science of infant cognition might hold the key to unlocking the next generation of unsupervised learning approaches. We identify three crucial factors enabling infants' quality and speed of learning: (1) babies' information processing is guided and constrained; (2) babies are learning from diverse, multimodal inputs; and (3) babies' input is shaped by development and active learning. We assess the extent to which these insights from infant learning have already been exploited in machine learning, examine how closely these implementations resemble the core insights, and propose how further adoption of these factors can give rise to previously unseen performance levels in unsupervised learning. Unsupervised machine learning algorithms reduce the dependence on curated, labeled datasets that are characteristic of supervised machine learning. The authors argue that the developmental science of infant cognition could inform the design of unsupervised machine learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助thvku采纳,获得10
刚刚
qiuling发布了新的文献求助30
2秒前
Nini1203完成签到,获得积分10
2秒前
吾将上下而求索应助JiaY采纳,获得10
2秒前
单于思雁完成签到,获得积分10
5秒前
隐形曼青应助解安珊采纳,获得10
5秒前
shuaiBsen完成签到,获得积分10
5秒前
顾矜应助ada采纳,获得10
5秒前
瑞仔完成签到,获得积分10
5秒前
Jasper应助Biggoose采纳,获得10
8秒前
8秒前
Mercy关注了科研通微信公众号
9秒前
lilian完成签到,获得积分10
9秒前
starry发布了新的文献求助10
9秒前
10秒前
meng完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
隐形曼青应助敏感的依霜采纳,获得10
12秒前
Mary完成签到,获得积分10
13秒前
青辞完成签到,获得积分10
14秒前
14秒前
15秒前
bkagyin应助冷冷采纳,获得10
16秒前
16秒前
研友_842aln完成签到,获得积分10
17秒前
解安珊发布了新的文献求助10
17秒前
大头头不大完成签到,获得积分10
17秒前
nicaicai发布了新的文献求助10
17秒前
机智海冬发布了新的文献求助10
18秒前
18秒前
咩咩完成签到,获得积分10
19秒前
20秒前
orixero应助晏晏采纳,获得10
21秒前
22秒前
bluesky发布了新的文献求助10
23秒前
23秒前
wuqian完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386976
求助须知:如何正确求助?哪些是违规求助? 2999956
关于积分的说明 8787977
捐赠科研通 2685712
什么是DOI,文献DOI怎么找? 1471190
科研通“疑难数据库(出版商)”最低求助积分说明 680182
邀请新用户注册赠送积分活动 672800