Effect of silica nanoparticles on cell membrane fluidity: The role of temperature and membrane composition

膜流动性 劳丹 生物物理学 化学 磷脂 细胞膜 费斯特共振能量转移 小泡 膜脂 生物化学 荧光 生物 物理 量子力学
作者
Xiaoran Wei,Nan Liu,Jian Song,Chao Ren,Xiaowen Tang,Wei Jiang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:838: 156552-156552 被引量:9
标识
DOI:10.1016/j.scitotenv.2022.156552
摘要

The increasing production and application of silica nanoparticles (SiO2 NPs) raise public concern regarding their environmental and health risks. The fluidity of the cell membrane is essential for supporting membrane proteins and regulating membrane transport. Changes in membrane fluidity inevitably influence the physiological activities of cells and even cause biological effects. In this study, the effect of SiO2 NPs on membrane fluidity was studied at 25 °C and 37 °C, and the role of membrane components in SiO2 NP-membrane interactions was investigated using giant plasma membrane vesicles (GPMVs) isolated from RBL-2H3 cells. SiO2 NPs cause a more serious membrane fluidity decrease at 37 °C than at 25 °C, which is revealed by the shift of Laurdan fluorescence emission and further quantified via forster resonance energy transfer (FRET) experiments. In addition, after the removal of 75 % cholesterol from the membrane, SiO2 NPs caused a greater extent of membrane gelation. These results indicate that SiO2 NPs prefer to interact with membranes that are more dynamic and less densely packed. Moreover, fluorescent experiments confirmed that the existence of phosphatidyl ethanolamine (PE) and phosphoinositide (PI) can mitigate NP-induced membrane gelation. Molecular dynamics simulation further demonstrated that SiO2 NPs form hydrogen bonds with the terminal of PE or PI but with the -PO4-- group in the middle of phosphatidylcholine (PC). The bonding that occurs in the terminal gives less restriction of phospholipid movement and a weaker effect on membrane fluidity. This research provides both evidence and mechanisms of SiO2 NP-induced membrane fluidity changes, which are helpful for understanding cell membrane damage and the biological effects of NPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lewis完成签到,获得积分10
1秒前
orixero应助TranYan采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
3秒前
4秒前
今后应助333采纳,获得10
5秒前
pu发布了新的文献求助10
6秒前
Akim应助梓榆采纳,获得10
7秒前
劼大大完成签到,获得积分10
7秒前
最优解完成签到 ,获得积分20
8秒前
8秒前
通~发布了新的文献求助10
8秒前
一段乐多完成签到,获得积分10
9秒前
9秒前
9秒前
给我找完成签到,获得积分10
10秒前
桐桐应助Yuki0616采纳,获得10
10秒前
小马甲应助鸣隐采纳,获得10
10秒前
ycd完成签到,获得积分10
11秒前
ark861023完成签到,获得积分10
11秒前
淡定问芙完成签到,获得积分10
11秒前
斯文败类应助惠惠采纳,获得10
12秒前
12秒前
Meowly完成签到,获得积分10
12秒前
13秒前
13秒前
陶醉觅夏发布了新的文献求助10
13秒前
pu完成签到,获得积分10
13秒前
小灵通完成签到,获得积分10
13秒前
给我找发布了新的文献求助10
13秒前
科研通AI2S应助LIn采纳,获得10
14秒前
gaga完成签到,获得积分10
14秒前
_Charmo完成签到,获得积分10
14秒前
Slemon完成签到,获得积分10
14秒前
谦谦姜完成签到,获得积分10
16秒前
17秒前
JINGZHANG发布了新的文献求助10
17秒前
17秒前
归海天与应助糊弄学专家采纳,获得10
17秒前
风中的青完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794