Estimating cadmium-lead concentrations in rice blades through fractional order derivatives of foliar spectra

VNIR公司 均方误差 数学 环境科学 算法 高光谱成像 计算机科学 统计 人工智能
作者
Shuangyin Zhang,Teng Fei,Yiyun Chen,Yongsheng Hong
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:219: 177-188 被引量:9
标识
DOI:10.1016/j.biosystemseng.2022.04.023
摘要

Heavy metal pollution in farmland harms the environment and poses a potential risk to human health. Visible and near-infrared reflectance (VNIR) spectroscopy is a promising tool for estimating heavy metal concentrations in plants. Integer-order derivatives (including the first and second) are commonly used to pre-process VNIR data and successfully detect certain spectral signals. However, they fail to detect gradual tilts or curvatures and useful target variable information. In this study, a greenhouse experiment covering 16 pre-treatments of Cd–Pb (cadmium-lead) cross-contamination was designed to collect the VNIR data of rice blades during the late booting stage. A fractional order derivative (FOD) algorithm with increments of 0.1 was utilised to pre-process the spectra of the rice blades to explore the model performance in building relationships between Cd and Pb concentrations and leaf spectra. The results indicated that the inversion with pre-processing of integer-order derivatives was not as good as the optimal results with pre-processing of fractional-order derivatives. The R2 and RMSE of the Cd estimation reached 0.84 and 4.69 at 0.3rd order pre-processing, while the R2 and RMSE of Pb were 0.49 and 191.24 at 1.4th order pre-processing. These optimal results were better than those with pre-processing of 1st and 2nd derivatives, resulting in an increase of R2 and a decrease of RMSE. These results indicated that fractional-order derivatives outperformed integer-order derivatives for pre-processing the rice blades spectra to estimate Cd–Pb concentrations. Our results demonstrated that FOD is an effective spectral processing routine for heavy metal estimation for Cd–Pb cross-contamination.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马子妍发布了新的文献求助10
刚刚
Jasper应助瑞ri采纳,获得30
2秒前
桐桐应助renjing574采纳,获得10
2秒前
一问三不栀完成签到,获得积分10
4秒前
summer完成签到,获得积分10
5秒前
sci大户发布了新的文献求助10
10秒前
zhang完成签到,获得积分10
11秒前
慕青应助LucyMartinez采纳,获得20
13秒前
panjunlu完成签到,获得积分10
15秒前
天天快乐应助马子妍采纳,获得10
19秒前
无聊的寒烟完成签到,获得积分20
23秒前
27秒前
29秒前
30秒前
黄YY完成签到 ,获得积分10
31秒前
马子妍发布了新的文献求助10
34秒前
36秒前
在水一方应助等待之柔采纳,获得10
36秒前
白石杏完成签到,获得积分10
40秒前
Hello应助666采纳,获得10
40秒前
紫罗风韵发布了新的文献求助10
42秒前
44秒前
45秒前
东郭乾完成签到 ,获得积分10
46秒前
无极微光应助妮妮采纳,获得20
48秒前
斯文败类应助YHC采纳,获得10
48秒前
蹇蹇完成签到 ,获得积分10
50秒前
Jing发布了新的文献求助10
51秒前
缓缓完成签到,获得积分10
52秒前
小马甲应助雨之夏日采纳,获得10
52秒前
52秒前
NexusExplorer应助马子妍采纳,获得10
54秒前
yueang完成签到 ,获得积分10
54秒前
吉吉国王完成签到,获得积分10
55秒前
紫罗风韵完成签到,获得积分10
56秒前
852应助Rousongxiaobei采纳,获得10
56秒前
57秒前
57秒前
1分钟前
kk发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877672
求助须知:如何正确求助?哪些是违规求助? 6544764
关于积分的说明 15681969
捐赠科研通 4996370
什么是DOI,文献DOI怎么找? 2692684
邀请新用户注册赠送积分活动 1634715
关于科研通互助平台的介绍 1592364