Estimating cadmium-lead concentrations in rice blades through fractional order derivatives of foliar spectra

VNIR公司 均方误差 数学 环境科学 算法 高光谱成像 计算机科学 统计 人工智能
作者
Shuangyin Zhang,Teng Fei,Yiyun Chen,Yongsheng Hong
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:219: 177-188 被引量:9
标识
DOI:10.1016/j.biosystemseng.2022.04.023
摘要

Heavy metal pollution in farmland harms the environment and poses a potential risk to human health. Visible and near-infrared reflectance (VNIR) spectroscopy is a promising tool for estimating heavy metal concentrations in plants. Integer-order derivatives (including the first and second) are commonly used to pre-process VNIR data and successfully detect certain spectral signals. However, they fail to detect gradual tilts or curvatures and useful target variable information. In this study, a greenhouse experiment covering 16 pre-treatments of Cd–Pb (cadmium-lead) cross-contamination was designed to collect the VNIR data of rice blades during the late booting stage. A fractional order derivative (FOD) algorithm with increments of 0.1 was utilised to pre-process the spectra of the rice blades to explore the model performance in building relationships between Cd and Pb concentrations and leaf spectra. The results indicated that the inversion with pre-processing of integer-order derivatives was not as good as the optimal results with pre-processing of fractional-order derivatives. The R2 and RMSE of the Cd estimation reached 0.84 and 4.69 at 0.3rd order pre-processing, while the R2 and RMSE of Pb were 0.49 and 191.24 at 1.4th order pre-processing. These optimal results were better than those with pre-processing of 1st and 2nd derivatives, resulting in an increase of R2 and a decrease of RMSE. These results indicated that fractional-order derivatives outperformed integer-order derivatives for pre-processing the rice blades spectra to estimate Cd–Pb concentrations. Our results demonstrated that FOD is an effective spectral processing routine for heavy metal estimation for Cd–Pb cross-contamination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
追寻烤鸡完成签到,获得积分10
4秒前
李健应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得20
8秒前
9秒前
10秒前
斯文败类应助mh采纳,获得30
10秒前
Hello应助老王采纳,获得10
13秒前
苏A尔发布了新的文献求助10
14秒前
JWonder发布了新的文献求助10
16秒前
16秒前
早日发文章完成签到 ,获得积分10
17秒前
21秒前
22秒前
22秒前
xzy998应助slx采纳,获得10
22秒前
Vickicherry应助slx采纳,获得10
22秒前
顾矜应助slx采纳,获得10
22秒前
22秒前
小丑完成签到 ,获得积分10
24秒前
24秒前
Kyrie完成签到,获得积分10
26秒前
容cc发布了新的文献求助10
26秒前
ddli发布了新的文献求助10
26秒前
mh发布了新的文献求助30
26秒前
27秒前
完美世界应助季橙采纳,获得10
30秒前
追寻冰淇淋完成签到 ,获得积分10
30秒前
会飞的猪完成签到 ,获得积分10
30秒前
HLQF完成签到,获得积分10
31秒前
xx发布了新的文献求助10
31秒前
善学以致用应助bjyx采纳,获得10
33秒前
平常的可乐完成签到 ,获得积分10
35秒前
37秒前
39秒前
39秒前
Rondab应助Luffa采纳,获得10
41秒前
buno发布了新的文献求助10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731