亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating cadmium-lead concentrations in rice blades through fractional order derivatives of foliar spectra

VNIR公司 均方误差 数学 环境科学 算法 高光谱成像 计算机科学 统计 人工智能
作者
Shuangyin Zhang,Teng Fei,Yiyun Chen,Yongsheng Hong
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:219: 177-188 被引量:9
标识
DOI:10.1016/j.biosystemseng.2022.04.023
摘要

Heavy metal pollution in farmland harms the environment and poses a potential risk to human health. Visible and near-infrared reflectance (VNIR) spectroscopy is a promising tool for estimating heavy metal concentrations in plants. Integer-order derivatives (including the first and second) are commonly used to pre-process VNIR data and successfully detect certain spectral signals. However, they fail to detect gradual tilts or curvatures and useful target variable information. In this study, a greenhouse experiment covering 16 pre-treatments of Cd–Pb (cadmium-lead) cross-contamination was designed to collect the VNIR data of rice blades during the late booting stage. A fractional order derivative (FOD) algorithm with increments of 0.1 was utilised to pre-process the spectra of the rice blades to explore the model performance in building relationships between Cd and Pb concentrations and leaf spectra. The results indicated that the inversion with pre-processing of integer-order derivatives was not as good as the optimal results with pre-processing of fractional-order derivatives. The R2 and RMSE of the Cd estimation reached 0.84 and 4.69 at 0.3rd order pre-processing, while the R2 and RMSE of Pb were 0.49 and 191.24 at 1.4th order pre-processing. These optimal results were better than those with pre-processing of 1st and 2nd derivatives, resulting in an increase of R2 and a decrease of RMSE. These results indicated that fractional-order derivatives outperformed integer-order derivatives for pre-processing the rice blades spectra to estimate Cd–Pb concentrations. Our results demonstrated that FOD is an effective spectral processing routine for heavy metal estimation for Cd–Pb cross-contamination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
6秒前
ffff完成签到 ,获得积分10
6秒前
畅快甜瓜发布了新的文献求助30
11秒前
华仔应助Omni采纳,获得10
11秒前
yb完成签到,获得积分10
13秒前
18秒前
18秒前
24秒前
ljy完成签到 ,获得积分10
36秒前
37秒前
39秒前
星辰大海应助畅快甜瓜采纳,获得10
39秒前
51秒前
53秒前
57秒前
1分钟前
1分钟前
weibo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
大个应助louis采纳,获得10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
Robot完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
jy发布了新的文献求助10
2分钟前
2分钟前
louis发布了新的文献求助10
2分钟前
shame完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI6.1应助jy采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542