Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance

共振(粒子物理) 化学物理 激子 联轴节(管道) 吸收(声学) 半导体 化学 材料科学 电子结构 分子物理学 计算化学 原子物理学 光电子学 物理 凝聚态物理 复合材料 冶金
作者
Kangwei Wang,Guangwei Shao,Shaoqian Peng,Xiaoxiao You,Xingyu Chen,Jingwen Xu,Huaxi Huang,Huan Wang,Di Wu,Jianlong Xia
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:126 (20): 3758-3767 被引量:12
标识
DOI:10.1021/acs.jpcb.2c02387
摘要

Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烦烦完成签到 ,获得积分10
刚刚
百宝发布了新的文献求助10
1秒前
jiangnan发布了新的文献求助10
1秒前
Sev完成签到,获得积分10
1秒前
1秒前
可耐的乘风完成签到,获得积分10
1秒前
FIN应助obito采纳,获得30
2秒前
啾啾发布了新的文献求助10
2秒前
爱学习的向日葵完成签到,获得积分10
3秒前
3秒前
华仔应助泛泛之交采纳,获得10
4秒前
雪123发布了新的文献求助10
4秒前
4秒前
5秒前
charon发布了新的文献求助10
5秒前
凶狠的食铁兽完成签到,获得积分10
5秒前
星辰大海应助花花啊采纳,获得10
5秒前
华仔应助liuyingke采纳,获得10
5秒前
HEIKU应助还不如瞎写采纳,获得10
6秒前
liuliumei发布了新的文献求助30
7秒前
zhouzhou完成签到,获得积分10
7秒前
sure发布了新的文献求助10
7秒前
上官若男应助Hu111采纳,获得10
8秒前
务实的紫伊完成签到,获得积分10
8秒前
春风得意完成签到,获得积分10
8秒前
爱你呃不可能完成签到,获得积分10
8秒前
WSY完成签到,获得积分20
8秒前
666星爷留下了新的社区评论
9秒前
风吹似夏完成签到,获得积分10
9秒前
9秒前
李健应助crr采纳,获得10
9秒前
tao完成签到,获得积分20
10秒前
淡淡的雪完成签到,获得积分10
10秒前
10秒前
10秒前
yitang发布了新的文献求助10
11秒前
涛浪发布了新的文献求助10
11秒前
12秒前
12秒前
乔治韦斯莱完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672