Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery

变更检测 计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 任务(项目管理) 计算机视觉 语言学 哲学 经济 管理
作者
Qian Shen,Jiru Huang,Min Wang,Shikang Tao,Rui Yang,Zhang Xin
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:189: 78-94 被引量:30
标识
DOI:10.1016/j.isprsjprs.2022.05.001
摘要

In the field of remote sensing applications, semantic change detection (SCD) simultaneously identifies changed areas and their change types by jointly conducting bitemporal image classification and change detection. It facilitates change reasoning and provides more application value than binary change detection (BCD), which offers only a binary map of the changed/unchanged areas. In this study, we propose a multitask Siamese network, named the semantic feature-constrained change detection (SFCCD) network, for building change detection in bitemporal high-spatial-resolution (HSR) images. SFCCD conducts feature extraction, semantic segmentation and change detection simultaneously, where change detection and semantic segmentation are the main and auxiliary tasks, respectively. For the segmentation task, ResNet50 is used to conduct image feature extraction, and the extracted semantic features are provided to execute the change detection task via a series of jump connections. For the change detection task, a global channel attention (GCA) module and a multiscale feature fusion (MSFF) module are designed, where high-level features offer training guidance to the low-level feature maps, and multiscale features are fused with multiple convolutions that possess different receptive fields. In bitemporal HSR images with different view angles, high-rise buildings have different directional height displacements, which generally cause serious false alarms for common change detection methods. However, known public building change detection datasets often lack buildings with height displacement. We thus create the Nanjing Dataset (NJDS) and design the aforementioned network structures and modules to target this issue. Experiments for method validation and comparison are conducted on the NJDS and two additional public datasets, i.e., the WHU Building Dataset (WBDS) and Google Dataset (GDS). Ablation experiments on the NJDS show that the joint utilization of the GCA and MSFF modules performs better than several classic modules, including atrous spatial pyramid pooling (ASPP), efficient spatial pyramid (ESP), channel attention block (CAB) and global attention upsampling (GAU) modules, in dealing with building height displacement. Furthermore, SFCCD achieves higher accuracy in terms of the OA, recall, F1-score and mIoU measures than several state-of-the-art change detection methods, including deeply supervised image fusion network (DSIFN), the dual-task constrained deep Siamese convolutional network (DTCDSCN), and multitask U-Net (MTU-Net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tsai发布了新的文献求助400
2秒前
林爷发布了新的文献求助10
3秒前
上官若男应助谦让的樱采纳,获得10
4秒前
5秒前
5秒前
明亮的忆灵完成签到,获得积分20
5秒前
笑哈哈完成签到,获得积分10
5秒前
zpp发布了新的文献求助10
5秒前
paprika发布了新的文献求助10
6秒前
6秒前
学术废物完成签到 ,获得积分10
6秒前
儒雅雅琴完成签到,获得积分10
6秒前
David应助ZJ采纳,获得10
7秒前
春秋大梦完成签到,获得积分10
7秒前
飘逸皮卡丘完成签到 ,获得积分10
8秒前
Bruial发布了新的文献求助10
9秒前
周周发布了新的文献求助10
9秒前
125ljw发布了新的文献求助10
10秒前
aifeeling发布了新的文献求助10
10秒前
领导范儿应助繁星采纳,获得10
11秒前
gucci完成签到,获得积分10
12秒前
吃饭学习睡觉完成签到,获得积分10
13秒前
tutulunzi完成签到,获得积分10
13秒前
曾经二娘完成签到,获得积分10
13秒前
luwenxuan完成签到,获得积分10
16秒前
我是老大应助冷酷的冰旋采纳,获得10
18秒前
小谌谌完成签到,获得积分10
18秒前
Owen应助llll采纳,获得30
18秒前
19秒前
yangjianya完成签到,获得积分10
20秒前
在路上完成签到 ,获得积分10
20秒前
多和5的武器完成签到,获得积分10
21秒前
可爱的函函应助125ljw采纳,获得10
21秒前
21秒前
景景发布了新的文献求助10
21秒前
興崋完成签到 ,获得积分10
22秒前
wanci应助饱满初雪采纳,获得10
23秒前
努尔发布了新的文献求助10
23秒前
aifeeling完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380