Set-membership affine projection algorithm based on the percentage change of the error signal and variable projection order

算法 投影(关系代数) 噪音(视频) 计算机科学 Dykstra投影算法 计算复杂性理论 自适应滤波器 趋同(经济学) 计算 人工智能 经济增长 图像(数学) 经济
作者
Carlos Trejo,Xochitl Maya,R Pérez Martínez,Gabriel Sanchez-Perez,Héctor Pérez-Meana,Juan-Gerardo Avalos,Giovanny Sánchez
出处
期刊:IEEE Latin America Transactions [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 496-502 被引量:4
标识
DOI:10.1109/tla.2022.9667149
摘要

Nowadays, the use of adaptive filters plays an important role in multiple signal processing applications, such as active noise control, acoustic echo cancellers, system identifiers, channel equalizer, among others. Until date, many of the existing adaptive algorithms such as affine projection algorithms offer a high convergence speed. However, its computational cost is also high. Currently, several authors make extraordinary efforts to reduce its computational cost to be used in practical applications. In this paper, we propose a new set-membership affine projection algorithm based on the percentage change of the error signal and variable projection order (SMAP-PC-VO). Specifically, we propose two techniques to create this algorithm; 1) the new algorithm uses an error bound, which is obtained by calcuting the percentage change of the error signal, to avoid the computation of the variance of additive noise, since in existing approaches this parameter determines the error bound. In practical applications, the computation of the variance of additive noise is infeasible since this signal is not available; 2) we propose a new method to dynamically modify the projection order in the new algorithm. As a consequence, its computational cost is reduced. To demonstrate its performance, the proposed algorithm was successfully tested in different environments for system identification and active noise control for headphone applications. The simulation results demonstrate that the proposed algorithm presents good convergence properties. In addition, the proposed algorithm exhibits a low overall computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan完成签到,获得积分10
刚刚
1秒前
1秒前
彭于晏应助啾啾采纳,获得10
3秒前
NexusExplorer应助喜悦的大船采纳,获得50
5秒前
赤侯发布了新的文献求助10
6秒前
7秒前
科研通AI5应助wangjw采纳,获得10
7秒前
8秒前
打打应助坦率大米采纳,获得30
8秒前
11秒前
科研通AI5应助cctv18采纳,获得10
11秒前
phyllis发布了新的文献求助10
12秒前
专注鼠标发布了新的文献求助10
12秒前
13秒前
神说应助cm357558984采纳,获得10
13秒前
13秒前
cctv18给123的求助进行了留言
15秒前
烟花应助余成风采纳,获得10
15秒前
yang完成签到,获得积分10
15秒前
16秒前
九影节发布了新的文献求助10
16秒前
晨雨初听发布了新的文献求助10
16秒前
hero发布了新的文献求助10
17秒前
17秒前
ABEDO发布了新的文献求助10
19秒前
20秒前
汉堡包应助王小明采纳,获得10
21秒前
phyllis完成签到,获得积分10
22秒前
小二郎应助hxy采纳,获得10
23秒前
23秒前
wangjw发布了新的文献求助10
23秒前
23秒前
24秒前
九影节完成签到,获得积分10
26秒前
冰红茶发布了新的文献求助10
26秒前
domingo完成签到,获得积分10
26秒前
科研通AI5应助晨雨初听采纳,获得10
28秒前
专注鼠标完成签到,获得积分10
29秒前
赘婿应助tom采纳,获得20
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756621
求助须知:如何正确求助?哪些是违规求助? 3299946
关于积分的说明 10112052
捐赠科研通 3014452
什么是DOI,文献DOI怎么找? 1655544
邀请新用户注册赠送积分活动 790009
科研通“疑难数据库(出版商)”最低求助积分说明 753533