Directed graph deep neural network for multi-step daily streamflow forecasting

水流 人工神经网络 计算机科学 洪水预报 卷积神经网络 数据挖掘 图形 深度学习 多层感知器 隐马尔可夫模型 混合神经网络 机器学习 人工智能 地图学 地理 大洪水 理论计算机科学 流域 考古
作者
Yongqi Liu,Guibing Hou,Feng Huang,Hui Qin,Baohua Wang,Yi Ling
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:607: 127515-127515 被引量:51
标识
DOI:10.1016/j.jhydrol.2022.127515
摘要

Reliable and accurate multi-step streamflow forecasting is of vital importance for the utilization of water resources and hydropower energy system. In this paper, a spatial deep learning model, directed graph deep neural network, is proposed for multi-step streamflow forecasting. The proposed model uses spatial information capture process and feature aggregation process to exploit multi-site hydrological and meteorological information. The spatial information capture process consists of multiple convolutional layers to extract the precipitation information of meteorological stations. And the feature aggregation process uses the multi-layer perceptron to aggregate the precipitation information and the streamflow information. The proposed model is applied in a real-world case study in the upstream of Yangtze River basin. Experimental results demonstrate that the proposed model significantly outperforms artificial neural network, Long Short-Term Memory Network, Gated recurrent unit and Convolutional Neural Network in terms of forecasting accuracy. In addition to the forecast accuracy, the hidden Markov regression is employed to quantify the forecasting uncertainty given by the directed graph deep neural network. The uncertainty estimation result demonstrates that the hidden Markov regression is able to handle the heteroscedastic and non-normal forecasting uncertainty given by directed graph deep neural network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shhoing应助欣喜的雪枫采纳,获得10
1秒前
我是老大应助wear88采纳,获得10
1秒前
Jw完成签到,获得积分10
1秒前
天天快乐应助默默莫莫采纳,获得10
1秒前
wrzzz完成签到,获得积分10
1秒前
Max完成签到,获得积分10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
飘逸的烧鹅完成签到 ,获得积分10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
失眠的汽车完成签到,获得积分10
2秒前
天天快乐应助科研通管家采纳,获得30
2秒前
单薄的飞风完成签到,获得积分10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
自然白安发布了新的文献求助10
2秒前
Blitz应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得30
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
19941210发布了新的文献求助10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551876
求助须知:如何正确求助?哪些是违规求助? 4636641
关于积分的说明 14645054
捐赠科研通 4578515
什么是DOI,文献DOI怎么找? 2510927
邀请新用户注册赠送积分活动 1486179
关于科研通互助平台的介绍 1457464