Deep Multiinstance Mammogram Classification With Region Label Assignment Strategy and Metric-Based Optimization

计算机科学 人工智能 分类器(UML) 乳腺摄影术 模式识别(心理学) 可视化 卷积神经网络 机器学习 公制(单位) 接收机工作特性 数据挖掘 乳腺癌 癌症 医学 运营管理 内科学 经济
作者
Dong Li,Lituan Wang,Ting Hu,Lei Zhang,Qing Lv
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 1717-1728 被引量:2
标识
DOI:10.1109/tcds.2021.3135947
摘要

Mammography is one of the most widely used and effective ways to screen early breast cancer. Convolutional-neural-network-based methods have obtained promising results for automatic mammography diagnosis. However, most of those approaches ignore the relationship between global and local characteristics of mammograms and lose sight of the relationship between different views of a patient. This study designs a novel region label assignment strategy, which takes advantage of all regions in each mammogram from a patient by assigning different labels to different regions and calculating the loss for each region separately. This approach enables the classifier to distinguish variable and tiny lesions in complex global conditions better. Only one case-level classification label is needed for diagnosing one patient (case). Moreover, the categories of mammogram data sets are always imbalanced. To address this problem, this study designs an area under the receiver operating characteristic curve (AUC)-based optimization method on minibatch strategy. Experimental results on a constructed data set and two publicly available data sets demonstrate that the proposed method performs satisfactorily compared with state-of-the-art mammogram classifiers. Visualization results show the proposed method can find out mammograms containing malignant lesions and illustrate the rough location of lesions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘀哩嘀哩完成签到,获得积分10
刚刚
1秒前
zhanglh完成签到,获得积分10
1秒前
BHX关闭了BHX文献求助
1秒前
cc完成签到,获得积分10
2秒前
3秒前
3秒前
活着完成签到,获得积分10
4秒前
隐形曼青应助汎影采纳,获得10
5秒前
桑榆。完成签到,获得积分20
5秒前
华仔应助myg8627采纳,获得10
7秒前
7秒前
cc关闭了cc文献求助
7秒前
cc关闭了cc文献求助
7秒前
斯文败类应助tina采纳,获得10
8秒前
8秒前
Ava应助小桃枝采纳,获得10
8秒前
8秒前
8秒前
8秒前
iNk应助菜菜采纳,获得20
8秒前
9秒前
9秒前
shang完成签到 ,获得积分10
10秒前
杨冀军完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Nimeide完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
fffgz发布了新的文献求助10
13秒前
江流发布了新的文献求助10
13秒前
麦当劳薯条完成签到,获得积分20
16秒前
orixero应助汎影采纳,获得10
16秒前
王记伟关注了科研通微信公众号
16秒前
过客发布了新的文献求助10
16秒前
17秒前
jiunuan应助住在魔仙堡的鱼采纳,获得10
18秒前
18秒前
ning发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943