A hybrid deep learning framework with physical process description for simulation of evapotranspiration

蒸散量 通量网 均方误差 显热 数学 潜热 环境科学 统计 气象学 涡度相关法 地理 生态学 生物 生态系统
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Sonam Sandeep Dash,Yizhao Wei,Han Li
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:606: 127422-127422 被引量:30
标识
DOI:10.1016/j.jhydrol.2021.127422
摘要

Evapotranspiration (ET) estimation models can be broadly classified as statistical or physical process based models. However, assuming the limitation of individual approaches, the integration of these two approaches has become a challenging task for ET simulation under varying surface and climatic conditions. To address this issue, a revised Penman-Monteith (PM) formula that uses a non-linear exponential Clausius-Clapeyron relationship was proposed in this study. The improved PM formula was further coupled into the loss function of the deep learning (DL) model, and subsequently, a hybrid DL model was formulated. The hybrid DL model with improved physical conceptualization considered the constraints of surface energy balance and turbulent diffusion processes in the ET simulation. The performance of the hybrid DL model was verified at 212 flux sites from the FLUXNET that contain ten types of underlying surfaces across the globe. The results revealed that as compared to the original DL model, the hybrid DL model improved the predictive capability of ET. The average root-mean-square-error (RMSE) and mean absolute percentage difference (MAPD) reduced by 12.1 W/m2 and 5.7%, respectively for latent heat flux (LE) simulation. Furthermore, the hybrid DL model also performed better than the original DL model in predicting the extreme events (such as ET under drought and heatwave conditions) which justifying its improved generalization capability. Sensitivity analysis outcomes showed that the vegetation parameters highest influence for ET simulations at the 212 flux sites, followed by soil parameters and meteorological parameters. The hybrid DL model was further applied to map the inter-seasonal distribution of global ET across twelve months of the year 2015 with five global ET products as the benchmark. Certainly, this research achieved the seamless integration of machine learning-based ET model and physical mechanism-based ET model and provided a new dimension for ET simulation. The hybrid DL model could be adopted to generate continuous ET datasets across regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽朋友完成签到,获得积分10
1秒前
一只橙子完成签到,获得积分10
1秒前
zxq完成签到 ,获得积分10
3秒前
傻傻的夜柳完成签到 ,获得积分10
3秒前
aaaaaa完成签到,获得积分10
4秒前
June完成签到 ,获得积分10
4秒前
葡萄小伊ovo完成签到 ,获得积分10
5秒前
rqf完成签到,获得积分10
6秒前
上官若男应助不如看海采纳,获得10
7秒前
白衣修身完成签到,获得积分10
8秒前
tt完成签到 ,获得积分10
8秒前
细心的盼易完成签到 ,获得积分10
8秒前
卓垚完成签到,获得积分10
8秒前
桃李完成签到,获得积分20
9秒前
莫愁一舞完成签到,获得积分10
10秒前
火星上无春完成签到 ,获得积分10
12秒前
东少完成签到,获得积分10
13秒前
yp发布了新的文献求助10
13秒前
14秒前
Violet完成签到 ,获得积分10
14秒前
李木禾完成签到 ,获得积分10
14秒前
体贴的夕阳完成签到 ,获得积分20
15秒前
15秒前
王妍完成签到 ,获得积分10
16秒前
yyy发布了新的文献求助10
17秒前
www关闭了www文献求助
17秒前
17秒前
liang19640908完成签到 ,获得积分10
17秒前
飞兔完成签到 ,获得积分10
18秒前
19秒前
LLL完成签到,获得积分10
19秒前
2000pluv完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
居不易完成签到,获得积分10
20秒前
牟泓宇完成签到 ,获得积分10
21秒前
RYAN完成签到 ,获得积分10
21秒前
ALU完成签到 ,获得积分10
21秒前
不如看海发布了新的文献求助10
21秒前
一如完成签到 ,获得积分10
23秒前
lili发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871004
求助须知:如何正确求助?哪些是违规求助? 4161130
关于积分的说明 12902777
捐赠科研通 3916945
什么是DOI,文献DOI怎么找? 2150903
邀请新用户注册赠送积分活动 1169186
关于科研通互助平台的介绍 1073026