已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid deep learning framework with physical process description for simulation of evapotranspiration

蒸散量 通量网 均方误差 显热 数学 潜热 环境科学 统计 气象学 涡度相关法 地理 生态学 生物 生态系统
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Sonam Sandeep Dash,Yizhao Wei,Han Li
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:606: 127422-127422 被引量:30
标识
DOI:10.1016/j.jhydrol.2021.127422
摘要

Evapotranspiration (ET) estimation models can be broadly classified as statistical or physical process based models. However, assuming the limitation of individual approaches, the integration of these two approaches has become a challenging task for ET simulation under varying surface and climatic conditions. To address this issue, a revised Penman-Monteith (PM) formula that uses a non-linear exponential Clausius-Clapeyron relationship was proposed in this study. The improved PM formula was further coupled into the loss function of the deep learning (DL) model, and subsequently, a hybrid DL model was formulated. The hybrid DL model with improved physical conceptualization considered the constraints of surface energy balance and turbulent diffusion processes in the ET simulation. The performance of the hybrid DL model was verified at 212 flux sites from the FLUXNET that contain ten types of underlying surfaces across the globe. The results revealed that as compared to the original DL model, the hybrid DL model improved the predictive capability of ET. The average root-mean-square-error (RMSE) and mean absolute percentage difference (MAPD) reduced by 12.1 W/m2 and 5.7%, respectively for latent heat flux (LE) simulation. Furthermore, the hybrid DL model also performed better than the original DL model in predicting the extreme events (such as ET under drought and heatwave conditions) which justifying its improved generalization capability. Sensitivity analysis outcomes showed that the vegetation parameters highest influence for ET simulations at the 212 flux sites, followed by soil parameters and meteorological parameters. The hybrid DL model was further applied to map the inter-seasonal distribution of global ET across twelve months of the year 2015 with five global ET products as the benchmark. Certainly, this research achieved the seamless integration of machine learning-based ET model and physical mechanism-based ET model and provided a new dimension for ET simulation. The hybrid DL model could be adopted to generate continuous ET datasets across regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟基基完成签到 ,获得积分10
1秒前
若什么至完成签到,获得积分10
3秒前
4秒前
小全完成签到,获得积分10
5秒前
lijunliang完成签到 ,获得积分10
10秒前
一颗小草发布了新的文献求助10
10秒前
10秒前
传奇3应助znlion采纳,获得10
13秒前
FashionBoy应助1356采纳,获得30
13秒前
十二发布了新的文献求助10
17秒前
研友_VZG7GZ应助无限的书芹采纳,获得10
18秒前
丘比特应助hlink采纳,获得10
18秒前
田様应助三水采纳,获得10
19秒前
沐沐溪三清完成签到 ,获得积分10
19秒前
20秒前
可爱的函函应助木讷山采纳,获得10
24秒前
Sugar发布了新的文献求助10
25秒前
医学小王完成签到 ,获得积分10
25秒前
土豪的灵竹完成签到 ,获得积分10
27秒前
科研通AI5应助Trends采纳,获得10
28秒前
竹萧完成签到,获得积分10
29秒前
Hiraeth完成签到 ,获得积分10
29秒前
jin关闭了jin文献求助
30秒前
华仔应助LILING采纳,获得10
31秒前
六六完成签到 ,获得积分10
31秒前
meng完成签到,获得积分10
32秒前
一颗小草完成签到,获得积分10
33秒前
34秒前
38秒前
hky发布了新的文献求助10
38秒前
科研通AI5应助芯之痕采纳,获得10
39秒前
39秒前
Sugar完成签到,获得积分20
40秒前
单身的老太完成签到,获得积分10
40秒前
派大星发布了新的文献求助10
41秒前
44秒前
激昂的沛柔完成签到,获得积分10
44秒前
李世航发布了新的文献求助30
44秒前
46秒前
硫化铅完成签到,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976572
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204365
捐赠科研通 3257284
什么是DOI,文献DOI怎么找? 1798667
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806577