清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A hybrid deep learning framework with physical process description for simulation of evapotranspiration

蒸散量 通量网 均方误差 显热 数学 潜热 环境科学 统计 气象学 涡度相关法 地理 生态学 生物 生态系统
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Sonam Sandeep Dash,Yizhao Wei,Han Li
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:606: 127422-127422 被引量:30
标识
DOI:10.1016/j.jhydrol.2021.127422
摘要

Evapotranspiration (ET) estimation models can be broadly classified as statistical or physical process based models. However, assuming the limitation of individual approaches, the integration of these two approaches has become a challenging task for ET simulation under varying surface and climatic conditions. To address this issue, a revised Penman-Monteith (PM) formula that uses a non-linear exponential Clausius-Clapeyron relationship was proposed in this study. The improved PM formula was further coupled into the loss function of the deep learning (DL) model, and subsequently, a hybrid DL model was formulated. The hybrid DL model with improved physical conceptualization considered the constraints of surface energy balance and turbulent diffusion processes in the ET simulation. The performance of the hybrid DL model was verified at 212 flux sites from the FLUXNET that contain ten types of underlying surfaces across the globe. The results revealed that as compared to the original DL model, the hybrid DL model improved the predictive capability of ET. The average root-mean-square-error (RMSE) and mean absolute percentage difference (MAPD) reduced by 12.1 W/m2 and 5.7%, respectively for latent heat flux (LE) simulation. Furthermore, the hybrid DL model also performed better than the original DL model in predicting the extreme events (such as ET under drought and heatwave conditions) which justifying its improved generalization capability. Sensitivity analysis outcomes showed that the vegetation parameters highest influence for ET simulations at the 212 flux sites, followed by soil parameters and meteorological parameters. The hybrid DL model was further applied to map the inter-seasonal distribution of global ET across twelve months of the year 2015 with five global ET products as the benchmark. Certainly, this research achieved the seamless integration of machine learning-based ET model and physical mechanism-based ET model and provided a new dimension for ET simulation. The hybrid DL model could be adopted to generate continuous ET datasets across regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白天亮完成签到,获得积分10
15秒前
46秒前
wujiwuhui完成签到 ,获得积分10
52秒前
1分钟前
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
爆米花应助bju采纳,获得10
2分钟前
2分钟前
TOUHOUU完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
沐浠完成签到 ,获得积分10
4分钟前
葛力完成签到,获得积分20
4分钟前
科研通AI2S应助葛力采纳,获得10
4分钟前
4分钟前
宇文非笑完成签到 ,获得积分0
4分钟前
科研通AI5应助laodai8855采纳,获得20
4分钟前
4分钟前
乾坤侠客LW完成签到,获得积分10
5分钟前
6分钟前
lixuebin完成签到 ,获得积分10
6分钟前
科研通AI2S应助葛力采纳,获得10
6分钟前
lxh完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
laodai8855发布了新的文献求助20
6分钟前
7分钟前
7分钟前
科研通AI5应助梨子茶采纳,获得30
7分钟前
7分钟前
bju发布了新的文献求助10
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
搜集达人应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167279
捐赠科研通 3248691
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652