A hybrid deep learning framework with physical process description for simulation of evapotranspiration

蒸散量 通量网 均方误差 显热 数学 潜热 环境科学 统计 气象学 涡度相关法 地理 生态学 生物 生态系统
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Sonam Sandeep Dash,Yizhao Wei,Han Li
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:606: 127422-127422 被引量:30
标识
DOI:10.1016/j.jhydrol.2021.127422
摘要

Evapotranspiration (ET) estimation models can be broadly classified as statistical or physical process based models. However, assuming the limitation of individual approaches, the integration of these two approaches has become a challenging task for ET simulation under varying surface and climatic conditions. To address this issue, a revised Penman-Monteith (PM) formula that uses a non-linear exponential Clausius-Clapeyron relationship was proposed in this study. The improved PM formula was further coupled into the loss function of the deep learning (DL) model, and subsequently, a hybrid DL model was formulated. The hybrid DL model with improved physical conceptualization considered the constraints of surface energy balance and turbulent diffusion processes in the ET simulation. The performance of the hybrid DL model was verified at 212 flux sites from the FLUXNET that contain ten types of underlying surfaces across the globe. The results revealed that as compared to the original DL model, the hybrid DL model improved the predictive capability of ET. The average root-mean-square-error (RMSE) and mean absolute percentage difference (MAPD) reduced by 12.1 W/m2 and 5.7%, respectively for latent heat flux (LE) simulation. Furthermore, the hybrid DL model also performed better than the original DL model in predicting the extreme events (such as ET under drought and heatwave conditions) which justifying its improved generalization capability. Sensitivity analysis outcomes showed that the vegetation parameters highest influence for ET simulations at the 212 flux sites, followed by soil parameters and meteorological parameters. The hybrid DL model was further applied to map the inter-seasonal distribution of global ET across twelve months of the year 2015 with five global ET products as the benchmark. Certainly, this research achieved the seamless integration of machine learning-based ET model and physical mechanism-based ET model and provided a new dimension for ET simulation. The hybrid DL model could be adopted to generate continuous ET datasets across regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pxy完成签到,获得积分10
刚刚
嘿嘿发布了新的文献求助10
刚刚
nn发布了新的文献求助10
1秒前
678邹发布了新的文献求助10
1秒前
廖怡星发布了新的文献求助10
3秒前
4秒前
Ulysses完成签到,获得积分10
4秒前
桐桐应助一修采纳,获得10
4秒前
liuhua完成签到,获得积分20
4秒前
4秒前
后笑晴完成签到,获得积分10
5秒前
5秒前
沙糖桔发布了新的文献求助10
6秒前
6秒前
淡淡从阳发布了新的文献求助20
8秒前
8秒前
缓慢的凝安完成签到 ,获得积分10
8秒前
9秒前
风淡了发布了新的文献求助10
9秒前
9秒前
bibi发布了新的文献求助10
9秒前
JTB发布了新的文献求助10
10秒前
小李发布了新的文献求助10
11秒前
超好运应助li采纳,获得10
12秒前
12秒前
爆米花应助sky采纳,获得10
13秒前
无糖零脂发布了新的文献求助10
13秒前
14秒前
平淡依玉发布了新的文献求助10
14秒前
方远锋发布了新的文献求助10
14秒前
15秒前
15秒前
希望天下0贩的0应助可可采纳,获得10
16秒前
姚盈盈发布了新的文献求助10
16秒前
LEL发布了新的文献求助10
16秒前
好有气质饭完成签到,获得积分20
17秒前
乘风的法袍完成签到,获得积分10
17秒前
精明手机完成签到,获得积分10
19秒前
成就凡双应助msd2phd采纳,获得10
19秒前
满满给满满的求助进行了留言
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760