A hybrid deep learning framework with physical process description for simulation of evapotranspiration

蒸散量 通量网 均方误差 显热 数学 潜热 环境科学 统计 气象学 涡度相关法 地理 生态学 生物 生态系统
作者
Han Chen,Jinhui Jeanne Huang‬‬‬‬,Sonam Sandeep Dash,Yizhao Wei,Han Li
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:606: 127422-127422 被引量:30
标识
DOI:10.1016/j.jhydrol.2021.127422
摘要

Evapotranspiration (ET) estimation models can be broadly classified as statistical or physical process based models. However, assuming the limitation of individual approaches, the integration of these two approaches has become a challenging task for ET simulation under varying surface and climatic conditions. To address this issue, a revised Penman-Monteith (PM) formula that uses a non-linear exponential Clausius-Clapeyron relationship was proposed in this study. The improved PM formula was further coupled into the loss function of the deep learning (DL) model, and subsequently, a hybrid DL model was formulated. The hybrid DL model with improved physical conceptualization considered the constraints of surface energy balance and turbulent diffusion processes in the ET simulation. The performance of the hybrid DL model was verified at 212 flux sites from the FLUXNET that contain ten types of underlying surfaces across the globe. The results revealed that as compared to the original DL model, the hybrid DL model improved the predictive capability of ET. The average root-mean-square-error (RMSE) and mean absolute percentage difference (MAPD) reduced by 12.1 W/m2 and 5.7%, respectively for latent heat flux (LE) simulation. Furthermore, the hybrid DL model also performed better than the original DL model in predicting the extreme events (such as ET under drought and heatwave conditions) which justifying its improved generalization capability. Sensitivity analysis outcomes showed that the vegetation parameters highest influence for ET simulations at the 212 flux sites, followed by soil parameters and meteorological parameters. The hybrid DL model was further applied to map the inter-seasonal distribution of global ET across twelve months of the year 2015 with five global ET products as the benchmark. Certainly, this research achieved the seamless integration of machine learning-based ET model and physical mechanism-based ET model and provided a new dimension for ET simulation. The hybrid DL model could be adopted to generate continuous ET datasets across regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳妹儿发布了新的文献求助10
刚刚
2秒前
杨大强完成签到,获得积分10
2秒前
wanci应助zoie0809采纳,获得10
2秒前
Bronya完成签到 ,获得积分10
2秒前
moon完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
文文武发布了新的文献求助10
5秒前
等待冰露完成签到 ,获得积分10
5秒前
科研通AI6应助王梓磬采纳,获得10
6秒前
Jasper应助aojl90采纳,获得10
7秒前
breeze完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
cc完成签到,获得积分10
10秒前
10秒前
桐桐应助吼吼哈嘿采纳,获得10
11秒前
11秒前
11秒前
谢昊宸完成签到,获得积分10
11秒前
jingjing完成签到,获得积分10
11秒前
所所应助吉不得采纳,获得10
11秒前
12秒前
我是老大应助张倩采纳,获得10
12秒前
13秒前
可靠笑翠发布了新的文献求助10
13秒前
蜘蛛侠发布了新的文献求助10
13秒前
风趣的洙发布了新的文献求助10
14秒前
1v发布了新的文献求助10
15秒前
dali发布了新的文献求助10
15秒前
15秒前
方勇飞发布了新的文献求助10
15秒前
xiaoxie发布了新的文献求助10
15秒前
杨大强发布了新的文献求助10
16秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531011
求助须知:如何正确求助?哪些是违规求助? 4619962
关于积分的说明 14570839
捐赠科研通 4559429
什么是DOI,文献DOI怎么找? 2498419
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913