已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Video-based AI Decision Support System for Lifting Risk Assessment

可用性 计算机科学 过程(计算) 接口(物质) 人机交互 机器学习 人工智能 用户界面 气泡 最大气泡压力法 并行计算 操作系统
作者
Guoyang Zhou,Vaneet Aggarwal,Ming Yin,Denny Yu
标识
DOI:10.1109/smc52423.2021.9659025
摘要

Physical injuries induced by lifting are commonly reported in the workplace. Early risk detection is essential for reducing lifting injuries but requires trained observers to perform assessments manually. Machine learning and computer vision techniques have been proposed to aid ergonomists in lifting risk assessments. However, these methods may not bring the practitioners into the decision-making process and frequently not interpretable to practitioners. We conducted a user study with a proposed risk assessment system that consists of a prediction module, explanation module, and prototype user interface. The prediction module consists of a logistics regression model capable of distinguishing the injury risk levels induced by different levels of force exertion in common lifting tasks. The logistics regression model makes predictions based on explainable body motion, posture, and facial features extracted through computer vision techniques. The explanation module makes up of explainable AI techniques. Specifically, a surrogate model provides local explanations for presenting how the system makes each prediction to users. The prototype interface presents the system's predictions and explanations. A usability study shows that the proposed system increases crowd-workers' and domain scholars' performance in assessing workers' injury risks in lifting. Furthermore, the usability study also shows that the proposed system increases their confidence in the assessment tasks when the system's evaluations agree with their subjective evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助zjgjnu采纳,获得10
3秒前
漂亮白枫发布了新的文献求助10
3秒前
hug完成签到,获得积分0
6秒前
搜集达人应助Johnny采纳,获得30
7秒前
Hyh_orz应助sean采纳,获得50
9秒前
WuYiHHH发布了新的文献求助10
9秒前
bkagyin应助漂亮白枫采纳,获得10
9秒前
油条完成签到,获得积分10
13秒前
14秒前
16秒前
wanci应助调皮秋采纳,获得10
17秒前
18秒前
酷波er应助zzz采纳,获得10
19秒前
斐嘿嘿发布了新的文献求助10
20秒前
Johnny发布了新的文献求助30
20秒前
十四发布了新的文献求助10
22秒前
Cruffin完成签到 ,获得积分10
23秒前
zephyr完成签到,获得积分10
23秒前
24秒前
负责怀莲发布了新的文献求助10
24秒前
义气芷蝶完成签到 ,获得积分10
28秒前
yaling完成签到,获得积分10
29秒前
zzz发布了新的文献求助10
30秒前
30秒前
苗条世德完成签到,获得积分10
31秒前
怕孤独的元风完成签到,获得积分10
31秒前
Owen应助feng采纳,获得10
32秒前
斐嘿嘿完成签到,获得积分10
32秒前
33秒前
万能图书馆应助十四采纳,获得10
33秒前
Newt发布了新的文献求助10
34秒前
35秒前
oldblack完成签到,获得积分10
36秒前
调皮秋发布了新的文献求助10
39秒前
飞舞伤寒完成签到,获得积分10
39秒前
英姑应助自由的秋灵采纳,获得10
41秒前
49秒前
49秒前
调皮秋完成签到,获得积分20
52秒前
爱宝乐宝福宝应助赵杰采纳,获得10
53秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208