Bi@C Nanospheres with the Unique Petaloid Core–Shell Structure Anchored on Porous Graphene Nanosheets as an Anode for Stable Sodium- and Potassium-Ion Batteries

材料科学 石墨烯 阳极 化学工程 电池(电) 电化学 电导率 透射电子显微镜 介电谱 钠离子电池 纳米颗粒 重量分析 电极 纳米技术 法拉第效率 冶金 有机化学 化学 功率(物理) 物理化学 工程类 物理 量子力学
作者
Fan Zhang,Xiaojie Liu,Beibei Wang,Gang Wang,Hui Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (50): 59867-59881 被引量:52
标识
DOI:10.1021/acsami.1c16946
摘要

Bismuth (Bi) has emerged as a prospective candidate as Na-ion and potassium-ion battery anodes because of its unique advantages of low cost, high theoretical gravimetric capacity (386 mAh g-1), and superior volumetric capacity (3800 mAh cm-3). However, the low electronic conductivity and the huge volume expansion of Bi during the alloying/dealloying reactions are extremely detrimental to cycling stability, which seriously hinder its practical application. To overcome these issues, we propose a rational design: Bi@C nanospheres with the unique petaloid core-shell structure are synthesized in one step for the first time and then combined with different contents of graphene (GR) nanosheets to form the composites Bi@C@GR. The Bi@C nanospheres with a core-shell structure are beneficial to shortening the transmission path of electrons/ions and reducing the risk from structural rupture of the particles during cycling. In addition, the combination of Bi@C nanospheres and porous GR could greatly improve the conductivity and prevent the aggregation of particles, which is conducive to better cycling stability and rate performance. Consequently, Bi@C@GR-2 presents a superior reversible capacity for sodium storage (300 mAh g-1 over 80 cycles) and potassium storage (200 mAh g-1 over 70 cycles) at 0.1 A g-1. Furthermore, in situ electrochemical impedance spectroscopy and ex situ transmission electron microscopy are carried out to analyze and reflect the kinetic reaction mechanism and the phase change of the Bi@C@GR-2 electrode during the charge/discharge processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪兽不吃人完成签到,获得积分10
刚刚
刚刚
刚刚
五小完成签到 ,获得积分10
刚刚
happy完成签到,获得积分10
1秒前
坚强水杯完成签到,获得积分10
1秒前
mhpvv发布了新的文献求助10
1秒前
1秒前
小飞侠来咯完成签到,获得积分10
1秒前
Sesame完成签到,获得积分10
1秒前
yeye发布了新的文献求助30
2秒前
3秒前
4秒前
ww发布了新的文献求助10
4秒前
阿九发布了新的文献求助10
4秒前
热爱工作的魂淡完成签到,获得积分10
5秒前
科研阳完成签到,获得积分10
5秒前
5秒前
多看看发布了新的文献求助10
5秒前
lsn发布了新的文献求助10
6秒前
Owen应助四叶草采纳,获得10
7秒前
小池完成签到 ,获得积分10
8秒前
8秒前
无花果应助WNL采纳,获得10
8秒前
善学以致用应助HCT采纳,获得10
9秒前
思源应助雷雷采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
moyu37发布了新的文献求助10
11秒前
珍珠完成签到,获得积分10
11秒前
小郭发布了新的文献求助10
11秒前
浮浮世世应助kathy采纳,获得30
12秒前
12秒前
12秒前
12秒前
AJ完成签到,获得积分10
13秒前
默默莫莫完成签到 ,获得积分10
13秒前
ChaosTenet完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802